AIS Logo
Living knowledge for digital leadership
All AI Governance & Ethics Digital Transformation & Innovation Supply Chain & IoT SME & IT Management Platform Ecosystems & Strategy Cybersecurity & Risk AI Applications & Technologies Healthcare & Well-being Digital Work & Collaboration
Workarounds—A Domain-Specific Modeling Language

Workarounds—A Domain-Specific Modeling Language

Carolin Krabbe, Agnes Aßbrock, Malte Reineke, and Daniel Beverungen
This study introduces a new visual modeling language called Workaround Modeling Notation (WAMN) designed to help organizations identify, analyze, and manage employee workarounds. Using a design science approach, the researchers developed this notation and demonstrated its practical application using a real-world case from a manufacturing company. The goal is to provide a structured method for understanding the complex effects of these informal process deviations.

Problem Employees often create 'workarounds' to bypass inefficient or problematic standard procedures, but companies lack a systematic way to assess their impact. This makes it difficult to understand the complex chain reactions these workarounds can cause, leading to missed opportunities for innovation and unresolved underlying issues. Without a clear framework, organizations struggle to make consistent decisions about whether to adopt, modify, or prevent these employee-driven solutions.

Outcome - The primary outcome is the Workaround Modeling Notation (WAMN), a domain-specific modeling language designed to map the causes, actions, and consequences of workarounds.
- WAMN enables managers to visualize the entire 'workaround-to-innovation' lifecycle, treating workarounds not just as deviations but as potential bottom-up process improvements.
- The notation uses clear visual cues, such as color-coding for positive and negative effects, to help decision-makers quickly assess the risks and benefits of a workaround.
- By applying WAMN to a manufacturing case, the study demonstrates its ability to untangle complex interconnections between multiple workarounds and their cascading effects on different organizational levels.
Workaround, Business Process Management, Domain-Specific Modeling Language, Design Science Research, Process Innovation, Organizational Decision-Making
Systematizing Different Types of Interfaces to Interact with Data Trusts

Systematizing Different Types of Interfaces to Interact with Data Trusts

David Acev, Florian Rieder, Dennis M. Riehle, and Maria A. Wimmer
This study conducts a systematic literature review to analyze the various types of interfaces used for interaction with Data Trusts, which are organizations that manage data on behalf of others. The research categorizes these interfaces into human-system (e.g., user dashboards) and system-system (e.g., APIs) interactions. The goal is to provide a clear classification and highlight existing gaps in research to support the future implementation of trustworthy Data Trusts.

Problem As the volume of data grows, there is an increasing need for trustworthy data sharing mechanisms like Data Trusts. However, for these trusts to function effectively, the interactions between data providers, users, and the trust itself must be seamless and standardized. The problem is a lack of clear understanding and systematization of the different interfaces required, which creates ambiguity and hinders the development of reliable and interoperable Data Trust ecosystems.

Outcome - The study categorizes interfaces for Data Trusts into two primary groups: Human-System Interfaces (user interfaces like GUIs, CLIs) and System-System Interfaces (technical interfaces like APIs).
- A significant gap exists in the current literature, which often lacks specific details and clear definitions for how these interfaces are implemented within Data Trusts.
- The research highlights a scarcity of standardized and interoperable technical interfaces, which is crucial for ensuring trustworthy and efficient data sharing.
- The paper concludes that developing robust, well-defined interfaces is a vital and foundational step for building functional and widely adopted Data Trusts.
Data Trust, user interface, API, interoperability, data sharing
Understanding How Freelancers in the Design Domain Collaborate with Generative Artificial Intelligence

Understanding How Freelancers in the Design Domain Collaborate with Generative Artificial Intelligence

Fabian Helms, Lisa Gussek, and Manuel Wiesche
This study explores how generative AI (GenAI), specifically text-to-image generation (TTIG) systems, impacts the creative work of freelance designers. Through qualitative interviews with 10 designers, the researchers conducted a thematic analysis to understand the nuances of this new form of human-AI collaboration.

Problem While the impact of GenAI on creative fields is widely discussed, there is little specific research on how it affects freelance designers. This group is uniquely vulnerable to technological disruption due to their direct market exposure and lack of institutional support, creating an urgent need to understand how these tools are changing their work processes and job security.

Outcome - The research identified four key tradeoffs freelancers face when using GenAI: creativity can be enhanced (inspiration) but also risks becoming generic (standardization).
- Efficiency is increased, but this can be undermined by 'overprecision', a form of perfectionism where too much time is spent on minor AI-driven adjustments.
- The interaction with AI is viewed dually: either as a helpful 'sparring partner' for ideas or as an unpredictable tool causing a frustrating lack of control.
- For the future of work, GenAI is seen as forcing a job transition where designers must adapt new skills, while also posing a direct threat of job loss, particularly for junior roles.
Generative Artificial Intelligence, Online Freelancing, Human-AI collaboration, Freelance designers, Text-to-image generation, Creative process
Extracting Explanatory Rationales of Activity Relationships using LLMs - A Comparative Analysis

Extracting Explanatory Rationales of Activity Relationships using LLMs - A Comparative Analysis

Kerstin Andree, Zahi Touqan, Leon Bein, and Luise Pufahl
This study investigates using Large Language Models (LLMs) to automatically extract and classify the reasons (explanatory rationales) behind the ordering of tasks in business processes from text. The authors compare the performance of various LLMs and four different prompting techniques (Vanilla, Few-Shot, Chain-of-Thought, and a combination) to determine the most effective approach for this automation.

Problem Understanding why business process steps occur in a specific order (due to laws, business rules, or best practices) is crucial for process improvement and redesign. However, this information is typically buried in textual documents and must be extracted manually, which is a very expensive and time-consuming task for organizations.

Outcome - Few-Shot prompting, where the model is given a few examples, significantly improves classification accuracy compared to basic prompting across almost all tested LLMs.
- The combination of Few-Shot learning and Chain-of-Thought reasoning also proved to be a highly effective approach.
- Interestingly, smaller and more cost-effective LLMs (like GPT-4o-mini) achieved performance comparable to or even better than larger models when paired with sophisticated prompting techniques.
- The findings demonstrate that LLMs can successfully automate the extraction of process knowledge, making advanced process analysis more accessible and affordable for organizations with limited resources.
Activity Relationships Classification, Large Language Models, Explanatory Rationales, Process Context, Business Process Management, Prompt Engineering
Building Digital Transformation Competence: Insights from a Media and Technology Company

Building Digital Transformation Competence: Insights from a Media and Technology Company

Mathias Bohrer and Thomas Hess
This study investigates how a large media and technology company successfully built the necessary skills and capabilities for its digital transformation. Through a qualitative case study, the research identifies a clear sequence and specific tools that organizations can use to develop competencies for managing digital innovations.

Problem Many organizations struggle with digital transformation because they lack the right internal skills, or 'competencies', to manage new digital technologies and innovations effectively. Existing research on this topic is often too abstract, offering little practical guidance on how companies can actually build these crucial competencies from the ground up.

Outcome - Organizations build digital transformation competence in a three-stage sequence: 1) Expanding foundational IT skills, 2) Developing 'meta' competencies like agility and a digital mindset, and 3) Fostering 'transformation' competencies focused on innovation and business model development.
- Effective competence building moves beyond traditional classroom training to include a diverse set of instruments like hackathons, coding camps, product development events, and experimental learning.
- The study proposes a model categorizing competence-building tools into three types: technology-specific (for IT skills), agility-nurturing (for organizational flexibility), and technology-agnostic (for innovation and strategy).
Competencies, Competence Building, Organizational Learning, Digital Transformation, Digital Innovation
Dynamic Equilibrium Strategies in Two-Sided Markets

Dynamic Equilibrium Strategies in Two-Sided Markets

Janik Bürgermeister, Martin Bichler, and Maximilian Schiffer
This study investigates when predatory pricing is a rational strategy for platforms competing in two-sided markets. The researchers develop a multi-stage Bayesian game model, which accounts for real-world factors like uncertainty about competitors' costs and risk aversion. Using deep reinforcement learning, they simulate competitive interactions to identify equilibrium strategies and market outcomes.

Problem Traditional economic models of platform competition often assume that companies have complete information about each other's costs, which is rarely true in reality. This simplification makes it difficult to explain why aggressive strategies like predatory pricing occur and under what conditions they lead to monopolies. This study addresses this gap by creating a more realistic model that incorporates uncertainty to better understand competitive platform dynamics.

Outcome - Uncertainty is a key driver of monopolization; when platforms are unsure of their rivals' costs, monopolies form in roughly 60% of scenarios, even if the platforms are otherwise symmetric.
- In contrast, under conditions of complete information (where costs are known), monopolies only emerge when one platform has a clear cost advantage over the other.
- Cost advantages (asymmetries) further increase the likelihood of a single platform dominating the market.
- When platform decision-makers are risk-averse, they are less likely to engage in aggressive pricing, which reduces the tendency for monopolies to form.
Two-sided markets, Predatory Pricing, Bayesian multi-stage games, Learning in games, Platform competition, Equilibrium strategies
Gender Bias in LLMs for Digital Innovation: Disparities and Fairness Concerns

Gender Bias in LLMs for Digital Innovation: Disparities and Fairness Concerns

Sumin Kim-Andres¹ and Steffi Haag¹
This study investigates gender bias in large language models (LLMs) like ChatGPT within the context of digital innovation and entrepreneurship. Using two tasks—associating gendered terms with professions and simulating venture capital funding decisions—the researchers analyzed ChatGPT-4o's outputs to identify how societal gender biases are reflected and reinforced by AI.

Problem As businesses increasingly integrate AI tools for tasks like brainstorming, hiring, and decision-making, there's a significant risk that these systems could perpetuate harmful gender stereotypes. This can create disadvantages for female entrepreneurs and innovators, potentially widening the existing gender gap in technology and business leadership.

Outcome - ChatGPT-4o associated male-denoting terms with digital innovation and tech-related professions significantly more often than female-denoting terms.
- In simulated venture capital scenarios, the AI model exhibited 'in-group bias,' predicting that both male and female venture capitalists would be more likely to fund entrepreneurs of their own gender.
- The study confirmed that LLMs can perpetuate gender bias through implicit cues like names alone, even when no explicit gender information is provided.
- The findings highlight the risk of AI reinforcing stereotypes in professional decision-making, which can limit opportunities for underrepresented groups in business and innovation.
Gender Bias, Large Language Models, Fairness, Digital Innovation, Artificial Intelligence
The Impact of Digital Platform Acquisition on Firm Value: Does Buying Really Help?

The Impact of Digital Platform Acquisition on Firm Value: Does Buying Really Help?

Yongli Huang, Maximilian Schreieck, Alexander Kupfer
This study examines investor reactions to corporate announcements of digital platform acquisitions to understand their impact on firm value. Using an event study methodology on a global sample of 157 firms, the research analyzes how the stock market responds based on the acquisition's motivation (innovation-focused vs. efficiency-focused) and the target platform's maturity.

Problem While acquiring digital platforms is an increasingly popular corporate growth strategy, little is known about its actual effectiveness and financial impact. Companies and investors lack clear guidance on which types of platform acquisitions are most likely to create value, leading to uncertainty and potentially poor strategic decisions.

Outcome - Generally, the announcement of a digital platform acquisition leads to a negative stock market return, indicating investor concerns about integration risks and high costs.
- Acquisitions motivated by 'exploration' (innovation and new opportunities) face a less negative market reaction than those motivated by 'exploitation' (efficiency and optimization).
- Acquiring mature platforms with established user bases mitigates negative stock returns more effectively than acquiring nascent (new) platforms.
Digital Platform Acquisition, Event Study, Exploration vs. Exploitation, Mature vs. Nascent, Chicken-and-Egg Problem
Using Large Language Models for Healthcare Data Interoperability: A Data Mediation Pipeline to Integrate Heterogeneous Patient-Generated Health Data and FHIR

Using Large Language Models for Healthcare Data Interoperability: A Data Mediation Pipeline to Integrate Heterogeneous Patient-Generated Health Data and FHIR

Torben Ukena, Robin Wagler, and Rainer Alt
This study explores the use of Large Language Models (LLMs) to streamline the integration of diverse patient-generated health data (PGHD) from sources like wearables. The researchers propose and evaluate a data mediation pipeline that combines an LLM with a validation mechanism to automatically transform various data formats into the standardized Fast Healthcare Interoperability Resources (FHIR) format.

Problem Integrating patient-generated health data from various devices into clinical systems is a major challenge due to a lack of interoperability between different data formats and hospital information systems. This data fragmentation hinders clinicians' ability to get a complete view of a patient's health, potentially leading to misinformed decisions and obstacles to patient-centered care.

Outcome - LLMs can effectively translate heterogeneous patient-generated health data into the valid, standardized FHIR format, significantly improving healthcare data interoperability.
- Providing the LLM with a few examples (few-shot prompting) was more effective than providing it with abstract rules and guidelines (reasoning prompting).
- The inclusion of a validation and self-correction loop in the pipeline is crucial for ensuring the LLM produces accurate and standard-compliant output.
- While successful with text-based data, the LLM struggled to accurately aggregate values from complex structured data formats like JSON and CSV, leading to lower semantic accuracy in those cases.
FHIR, semantic interoperability, large language models, hospital information system, patient-generated health data
Acceptance Analysis of the Metaverse: An Investigation in the Paper- and Packaging Industry

Acceptance Analysis of the Metaverse: An Investigation in the Paper- and Packaging Industry

First Author¹, Second Author¹, Third Author¹,², and Fourth Author²
This study investigates employee acceptance of metaverse technologies within the traditionally conservative paper and packaging industry. Using the Technology Acceptance Model 3, the research was conducted as a living lab experiment in a leading packaging company. The methodology combined qualitative content analysis with quantitative multiple regression modelling to assess the key factors influencing adoption.

Problem While major technology companies are heavily investing in the metaverse for workplace applications, there is a significant research gap concerning employee acceptance of these immersive technologies. This is particularly relevant for traditionally non-digital industries, like paper and packaging, which are seeking to digitalize but face unique adoption barriers. This study addresses the lack of empirical data on how employees in such sectors perceive and accept metaverse tools for work and collaboration.

Outcome - Employees in the paper and packaging industry show a moderate but ambiguous acceptance of the metaverse, with an average score of 3.61 out of 5.
- The most significant factors driving acceptance are the perceived usefulness (PU) of the technology for their job and its perceived ease of use (PEU).
- Job relevance was found to be a key influencer of perceived usefulness, while an employee's confidence in their own computer skills (computer self-efficacy) was a key predictor for perceived ease of use.
- While employees recognized benefits like improved virtual collaboration, they also raised concerns about hardware limitations (e.g., headset weight, image clarity) and the technology's overall maturity compared to existing tools.
Metaverse, Technology Acceptance Model 3, Living lab, Paper and Packaging industry, Workplace
Generative AI Usage of University Students: Navigating Between Education and Business

Generative AI Usage of University Students: Navigating Between Education and Business

Fabian Walke, Veronika Föller
This study investigates how university students who also work professionally use Generative AI (GenAI) in both their academic and business lives. Using a grounded theory approach, the researchers interviewed eleven part-time students from a distance learning university to understand the characteristics, drivers, and challenges of their GenAI usage.

Problem While much research has explored GenAI in education or in business separately, there is a significant gap in understanding its use at the intersection of these two domains. Specifically, the unique experiences of part-time students who balance professional careers with their studies have been largely overlooked.

Outcome - GenAI significantly enhances productivity and learning for students balancing work and education, helping with tasks like writing support, idea generation, and summarizing content.
- Students express concerns about the ethical implications, reliability of AI-generated content, and the risk of academic misconduct or being falsely accused of plagiarism.
- A key practical consequence is that GenAI tools like ChatGPT are replacing traditional search engines for many information-seeking tasks due to their speed and directness.
- The study highlights a strong need for universities to provide clear guidelines, regulations, and formal training on using GenAI effectively and ethically.
- User experience is a critical factor; a positive, seamless interaction with a GenAI tool promotes continuous usage, while a poor experience diminishes willingness to use it.
Artificial Intelligence, ChatGPT, Enterprise, Part-time students, Generative AI, Higher Education
Exploring Algorithmic Management Practices in Healthcare – Use Cases along the Hospital Value Chain

Exploring Algorithmic Management Practices in Healthcare – Use Cases along the Hospital Value Chain

Maximilian Kempf, Filip Simić, Maria Doerr, and Alexander Benlian
This study explores how algorithmic management (AM), the use of algorithms for tasks typically done by human managers, is being applied in hospitals. Through nine semi-structured interviews with doctors and software providers, the research identifies and analyzes specific use cases for AM across the hospital's operational value chain, from patient admission to administration.

Problem While AM is well-studied in low-skill, platform-based work like ride-hailing, its application in traditional, high-skill industries such as healthcare is not well understood. This research addresses the gap by investigating how these algorithmic systems are embedded in complex hospital environments to manage skilled professionals and critical patient care processes.

Outcome - The study identified five key use cases of algorithmic management in hospitals: patient intake management, bed management, doctor-to-patient assignment, workforce management, and performance monitoring.
- In admissions, algorithms help prioritize patients by urgency and automate bed assignments, significantly improving efficiency and reducing staff's administrative workload.
- For treatment and administration, AM systems assign doctors to patients based on expertise and availability, manage staff schedules to ensure fairer workloads, and track performance through key metrics (KPIs).
- While AM can increase efficiency, reduce stress through fairer task distribution, and optimize resource use, it also introduces pressures like rigid schedules and raises concerns about the transparency of performance evaluations for medical staff.
Algorithmic Management, Healthcare, Hospital Value Chain, Qualitative Interview Study, Hospital Management, Workflow Automation
Designing for Digital Inclusion: Iterative Enhancement of a Process Guidance User Interface for Senior Citizens

Designing for Digital Inclusion: Iterative Enhancement of a Process Guidance User Interface for Senior Citizens

Michael Stadler, Markus Noeltner, Julia Kroenung
This study developed and tested a user interface designed to help senior citizens use online services more easily. Using a travel booking website as a case study, the researchers combined established design principles with a step-by-step visual guide and refined the design over three rounds of testing with senior participants.

Problem As more essential services like banking, shopping, and booking appointments move online, many senior citizens face significant barriers to participation due to complex and poorly designed interfaces. This digital divide can lead to both technological and social disadvantages for the growing elderly population, a problem many businesses fail to address.

Outcome - A structured, visual process guide significantly helps senior citizens navigate and complete online tasks.
- Iteratively refining the user interface based on direct feedback from seniors led to measurable improvements in performance, with users completing tasks faster in each subsequent round.
- Simple design adaptations, such as reducing complexity, using clear instructions, and ensuring high-contrast text, effectively reduce the cognitive load on older users.
- The findings confirm that designing digital services with seniors in mind is crucial for creating a more inclusive digital world and can help businesses reach a larger customer base.
Usability for Seniors, Process Guidance, Digital Accessibility, Digital Inclusion, Senior Citizens, Heuristic Evaluation, User Interface Design
Designing Digital Service Innovation Hubs: An Ecosystem Perspective on the Challenges and Requirements of SMEs and the Public Sector

Designing Digital Service Innovation Hubs: An Ecosystem Perspective on the Challenges and Requirements of SMEs and the Public Sector

Jannika Marie Schäfer, Jonas Liebschner, Polina Rajko, Henrik Cohnen, Nina Lugmair, and Daniel Heinz
This study investigates the design of a Digital Service Innovation Hub (DSIH) to facilitate and orchestrate service innovation for small and medium-sized enterprises (SMEs) and public organizations. Using a design science research approach, the authors conducted 17 expert interviews and focus group validations to analyze challenges and derive specific design requirements. The research aims to create a blueprint for a hub that moves beyond simple networking to actively manage innovation ecosystems.

Problem Small and medium-sized enterprises (SMEs) and public organizations often struggle to innovate within service ecosystems due to resource constraints, knowledge gaps, and difficulties finding the right partners. Existing Digital Innovation Hubs (DIHs) typically focus on specific technological solutions and matchmaking but fail to provide the comprehensive orchestration needed for sustained service innovation. This gap leaves many organizations unable to leverage the full potential of collaborative innovation.

Outcome - The study identifies four key challenge areas for SMEs and public organizations: exogenous factors (e.g., market speed, regulations), intraorganizational factors (e.g., resistant culture, outdated systems), knowledge and skill gaps, and partnership difficulties.
- It proposes a set of design requirements for Digital Service Innovation Hubs (DSIHs) centered on three core functions: (1) orchestrating actors by facilitating matchmaking, collaboration, and funding opportunities.
- (2) Facilitating structured knowledge transfer by sharing best practices, providing tailored content, and creating interorganizational learning formats.
- (3) Ensuring effective implementation and provision of the hub itself through user-friendly design, clear operational frameworks, and tangible benefits for participants.
service innovation, ecosystem, innovation hubs, SMEs, public sector
The GenAI Who Knew Too Little – Revisiting Transactive Memory Systems in Human GenAI Collaboration

The GenAI Who Knew Too Little – Revisiting Transactive Memory Systems in Human GenAI Collaboration

Christian Meske, Tobias Hermanns, Florian Brachten
This study investigates how traditional models of team collaboration, known as Transactive Memory Systems (TMS), manifest when humans work with Generative AI. Through in-depth interviews with 14 knowledge workers, the research analyzes the unique dynamics of expertise recognition, trust, and coordination that emerge in these partnerships.

Problem While Generative AI is increasingly used as a collaborative tool, our understanding of teamwork is based on human-to-human interaction. This creates a knowledge gap, as the established theories do not account for an AI partner that operates on algorithms rather than social cues, potentially leading to inefficient and frustrating collaborations.

Outcome - Human-AI collaboration is asymmetrical: Humans learn the AI's capabilities, but the AI fails to recognize and remember human expertise beyond a single conversation.
- Trust in GenAI is ambivalent and requires verification: Users simultaneously see the AI as an expert yet doubt its reliability, forcing them to constantly verify its outputs, a step not typically taken with trusted human colleagues.
- Teamwork is hierarchical, not mutual: Humans must always take the lead and direct a passive AI that lacks initiative, creating a 'boss-employee' dynamic rather than a reciprocal partnership where both parties contribute ideas.
Generative AI, Transactive Memory Systems, Human-AI Collaboration, Knowledge Work, Trust in AI, Expertise Recognition, Coordination
A Survey on Citizens' Perceptions of Social Risks in Smart Cities

A Survey on Citizens' Perceptions of Social Risks in Smart Cities

Elena Fantino, Sebastian Lins, and Ali Sunyaev
This study identifies 15 key social risks associated with the development of smart cities, such as privacy violations and increased surveillance. It then examines public perception of these risks through a quantitative survey of 310 participants in Germany and Italy. The research aims to understand how citizens view the balance between the benefits and potential harms of smart city technologies.

Problem While the digital transformation of cities promises benefits like enhanced efficiency and quality of life, it often overlooks significant social risks. Issues like data privacy, cybersecurity threats, and growing social divides can undermine human security and well-being, yet citizens' perspectives on these dangers are frequently ignored in the planning and implementation process.

Outcome - Citizens rate both the probability and severity of social risks in smart cities as relatively high.
- Despite recognizing these significant risks, participants generally maintain a positive attitude towards the concept of smart cities, highlighting a duality in public perception.
- The risk perceived as most probable by citizens is 'profiling', while 'cybersecurity threats' are seen as having the most severe impact.
- Risk perception differs based on demographic factors like age and nationality; for instance, older participants and Italian citizens reported higher risk perceptions than their younger and German counterparts.
- The findings underscore the necessity of a participatory and ethical approach to smart city development that actively involves citizens to mitigate risks and ensure equitable benefits.
smart cities, social risks, citizens' perception, AI ethics, social impact
Aisle be Back: State-of-the-Art Adoption of Retail Service Robots in Brick-and-Mortar Retail

Aisle be Back: State-of-the-Art Adoption of Retail Service Robots in Brick-and-Mortar Retail

Luisa Strelow, Michael Dominic Harr, and Reinhard Schütte
This study analyzes the current state of Retail Service Robot (RSR) adoption in physical, brick-and-mortar (B&M) stores. Using a dual research method that combines a systematic literature review with a multi-case study of major European retailers, the paper synthesizes how these robots are currently being used for various operational tasks.

Problem Brick-and-mortar retailers are facing significant challenges, including acute staff shortages and intense competition from online stores, which threaten their operational efficiency. While service robots offer a potential solution to sustain operations and transform the customer experience, a comprehensive understanding of their current adoption in retail environments is lacking.

Outcome - Retail Service Robots (RSRs) are predominantly adopted for tasks related to information exchange and goods transportation, which improves both customer service and operational efficiency.
- The potential for more advanced, human-like (anthropomorphic) interaction between robots and customers has not yet been fully utilized by retailers.
- The adoption of RSRs in the B&M retail sector is still in its infancy, with most robots being used for narrowly defined, single-purpose tasks rather than leveraging their full multi-functional potential.
- Research has focused more on customer-robot interactions than on employee-robot interactions, leaving a gap in understanding employee acceptance and collaboration.
- Many robotic systems discussed in academic literature are prototypes tested in labs, with few long-term, real-world deployments reported, especially in customer service roles.
Retail Service Robot, Brick-and-Mortar, Technology Adoption, Artificial Intelligence, Automation
Fostering Active Student Engagement in Flipped Classroom Teaching with Social Normative Feedback Research Paper

Fostering Active Student Engagement in Flipped Classroom Teaching with Social Normative Feedback Research Paper

Maximilian May, Konstantin Hopf, Felix Haag, Thorsten Staake, and Felix Wortmann
This study examines the effectiveness of social normative feedback in improving student engagement within a flipped classroom setting. Through a randomized controlled trial with 140 undergraduate students, researchers provided one group with emails comparing their assignment progress to their peers, while a control group received no such feedback during the main study period.

Problem The flipped classroom model requires students to be self-regulated, but many struggle with procrastination, leading to late submissions of graded assignments and underuse of voluntary learning materials. This behavior negatively affects academic performance, creating a need for scalable digital interventions that can encourage more timely and active student participation.

Outcome - The social normative feedback intervention significantly reduced late submissions of graded assignments by 8.4 percentage points (an 18.5% decrease) compared to the control group.
- Submitting assignments earlier was strongly correlated with higher correctness rates and better academic performance.
- The feedback intervention helped mitigate the decline in assignment quality that was observed in later course modules for the control group.
- The intervention did not have a significant effect on students' engagement with optional, voluntary assignments during the semester.
Flipped Classroom, Social Normative Feedback, Self Regulated Learning, Digital Interventions, Student Engagement, Higher Education
Load More Showing 144 of 229