Carolin Krabbe, Agnes Aßbrock, Malte Reineke, and Daniel Beverungen
This study introduces a new visual modeling language called Workaround Modeling Notation (WAMN) designed to help organizations identify, analyze, and manage employee workarounds. Using a design science approach, the researchers developed this notation and demonstrated its practical application using a real-world case from a manufacturing company. The goal is to provide a structured method for understanding the complex effects of these informal process deviations.
Problem
Employees often create 'workarounds' to bypass inefficient or problematic standard procedures, but companies lack a systematic way to assess their impact. This makes it difficult to understand the complex chain reactions these workarounds can cause, leading to missed opportunities for innovation and unresolved underlying issues. Without a clear framework, organizations struggle to make consistent decisions about whether to adopt, modify, or prevent these employee-driven solutions.
Outcome
- The primary outcome is the Workaround Modeling Notation (WAMN), a domain-specific modeling language designed to map the causes, actions, and consequences of workarounds. - WAMN enables managers to visualize the entire 'workaround-to-innovation' lifecycle, treating workarounds not just as deviations but as potential bottom-up process improvements. - The notation uses clear visual cues, such as color-coding for positive and negative effects, to help decision-makers quickly assess the risks and benefits of a workaround. - By applying WAMN to a manufacturing case, the study demonstrates its ability to untangle complex interconnections between multiple workarounds and their cascading effects on different organizational levels.
Host: Welcome to A.I.S. Insights, the podcast at the intersection of business and technology, powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we’re diving into a topic that happens in every company but is rarely managed well: employee workarounds. We’ll be discussing a fascinating study titled “Workarounds—A Domain-Specific Modeling Language.” Host: To help us unpack it, we have our expert analyst, Alex Ian Sutherland. Alex, welcome. Expert: Great to be here, Anna. Host: So, this study introduces a new visual language to help organizations identify and manage these workarounds. First, Alex, can you set the scene for us? What’s the big problem with workarounds that this study is trying to solve? Expert: Absolutely. The core problem is that companies are flying blind. Employees invent workarounds all the time to get their jobs done, bypassing procedures they see as inefficient. But management often has no systematic way to see what’s happening or to understand the impact. Host: So they’re like invisible, unofficial processes running inside the official ones? Expert: Exactly. And the study points out that these can cause complex chain reactions. A simple shortcut in one department might solve a local problem but create a massive compliance risk or data quality issue somewhere else down the line. Without a clear framework, businesses can't decide if a workaround is a brilliant innovation to be adopted or a dangerous liability to be stopped. Host: That makes sense. You can’t manage what you can’t see. How did the researchers approach creating a solution for this? Expert: They used an approach called Design Science. Instead of just observing the problem, they set out to build a practical tool to solve it. In this case, they designed and developed a brand-new modeling language specifically for visualizing workarounds. Then they tested its applicability using a real-world case from a large manufacturing company. Host: So they built a tool for the job. What was the main outcome? What does this tool, this new language, actually do? Expert: The primary outcome is called the Workaround Modeling Notation, or WAMN for short. Think of it as a visual blueprint for workarounds. It allows a manager to map out the entire story: what caused the workaround, what the employee actually does, and all the consequences that follow. Host: And what makes it so effective? Expert: A few things. First, it treats workarounds not just as deviations, but as potential bottom-up innovations. It reframes the conversation. Second, it uses really clear visual cues. For example, positive effects of a workaround are colored green, and negative effects are red. Host: I like that. It sounds very intuitive. You can see the balance of good and bad immediately. Expert: Precisely. In the manufacturing case they studied, one workaround saved time on the assembly line—a positive, green effect. But it also led to inaccurate inventory records—a negative, red effect. WAMN puts both of those impacts on the same map, making the trade-offs crystal clear and untangling how one workaround can cascade into another. Host: This is the key part for our listeners. Alex, why does this matter for business? What are the practical takeaways for a manager or executive? Expert: This is incredibly practical. First, WAMN gives you a structured way to stop guessing. You can move from anecdotes about workarounds to a data-driven conversation about their true costs and benefits. Host: So it helps you make better decisions. Expert: Yes, and it helps you turn employee creativity into a competitive advantage. That clever shortcut an employee designed might be a brilliant process improvement waiting to be standardized across the company. WAMN provides a path to identify and scale those bottom-up innovations safely. Host: So it’s a tool for both risk management and innovation. Expert: Exactly. It helps you decide whether to adopt, adapt, or prevent a workaround. The study mentions creating a "workaround board"—a dedicated group that uses these visual maps to make informed decisions. It creates a common language for operations, IT, and management to collaborate on improving how work actually gets done. Host: Fantastic. So, to summarize for our audience: companies are filled with employee workarounds that are often invisible and poorly understood. Host: This study created a visual language called WAMN that allows businesses to map these workarounds, clearly see their positive and negative effects, and treat them as a source of potential innovation. Host: Ultimately, it’s about making smarter, more consistent decisions to improve processes from the ground up. Alex, thank you so much for breaking that down for us. Expert: My pleasure, Anna. Host: And thanks to our audience for tuning into A.I.S. Insights, powered by Living Knowledge. Join us next time as we decode another key piece of research for your business.
Workaround, Business Process Management, Domain-Specific Modeling Language, Design Science Research, Process Innovation, Organizational Decision-Making
Systematizing Different Types of Interfaces to Interact with Data Trusts
David Acev, Florian Rieder, Dennis M. Riehle, and Maria A. Wimmer
This study conducts a systematic literature review to analyze the various types of interfaces used for interaction with Data Trusts, which are organizations that manage data on behalf of others. The research categorizes these interfaces into human-system (e.g., user dashboards) and system-system (e.g., APIs) interactions. The goal is to provide a clear classification and highlight existing gaps in research to support the future implementation of trustworthy Data Trusts.
Problem
As the volume of data grows, there is an increasing need for trustworthy data sharing mechanisms like Data Trusts. However, for these trusts to function effectively, the interactions between data providers, users, and the trust itself must be seamless and standardized. The problem is a lack of clear understanding and systematization of the different interfaces required, which creates ambiguity and hinders the development of reliable and interoperable Data Trust ecosystems.
Outcome
- The study categorizes interfaces for Data Trusts into two primary groups: Human-System Interfaces (user interfaces like GUIs, CLIs) and System-System Interfaces (technical interfaces like APIs). - A significant gap exists in the current literature, which often lacks specific details and clear definitions for how these interfaces are implemented within Data Trusts. - The research highlights a scarcity of standardized and interoperable technical interfaces, which is crucial for ensuring trustworthy and efficient data sharing. - The paper concludes that developing robust, well-defined interfaces is a vital and foundational step for building functional and widely adopted Data Trusts.
Host: Welcome to A.I.S. Insights, the podcast powered by Living Knowledge. I’m your host, Anna Ivy Summers. Today, we're diving into a critical component of our data-driven world: trust. Specifically, we're looking at a study called "Systematizing Different Types of Interfaces to Interact with Data Trusts".
Host: It's a fascinating piece of research that analyzes the various ways we connect with Data Trusts—those organizations that manage data on behalf of others—and aims to create a clear roadmap for building them effectively. With me to break it all down is our analyst, Alex Ian Sutherland. Welcome, Alex.
Expert: Thanks for having me, Anna.
Host: So, Alex, let's start with the big picture. We all hear about the explosion of data. Why is a study about 'interfaces for Data Trusts' so important right now? What's the real-world problem here?
Expert: It’s a huge problem. Businesses, governments, and individuals want to share data to create better services, train AI, and innovate. But they're hesitant, and for good reason. How do you share data without losing control or compromising privacy? Data Trusts are a potential solution—a neutral third party managing data sharing based on agreed-upon rules.
Expert: But for a trust to work, all the participants—people and software systems—need to be able to connect to it seamlessly and securely. The problem this study identified is that there’s no blueprint for how to build those connections. It's like everyone agrees we need a new global power grid, but no one has standardized the plugs or the voltage.
Host: That lack of standardization sounds like a major roadblock. So how did the researchers approach trying to create that blueprint?
Expert: They conducted a systematic literature review. Essentially, they combed through thousands of academic articles and research papers published over the last decade and a half to find everything written about interfaces in the context of Data Trusts. They then filtered this massive pool of information down to the most relevant studies to create a comprehensive map of the current landscape—what works, what’s being discussed, and most importantly, what’s missing.
Host: A map of the current landscape. What were the key landmarks on that map? What did they find?
Expert: The clearest finding was that you can group all these interfaces into two main categories. First, you have Human-System Interfaces. Think of these as the front door for people. This includes graphical user interfaces, or GUIs, like a web dashboard where a user can manage their consent settings or view data usage reports.
Host: Okay, that makes sense. A way for a person to interact directly with the trust. What’s the second category?
Expert: The second is System-System Interfaces. This is how computer systems talk to each other. The most common example is an API, an Application Programming Interface. This allows a company's software to automatically request data from the trust or submit new data, all without human intervention. It’s the engine that powers the automated, scalable data sharing.
Host: So, a clear distinction between the human front door and the system's engine. Did the study find that these were well-defined and ready to go?
Expert: Far from it. And this was the second major finding: there are significant gaps. The literature often mentions the need for a 'user interface' or an 'API', but provides very few specifics on how they should be designed or implemented for a Data Trust. There's a real scarcity of detail.
Expert: This leads to the third key finding: a critical lack of standardization. Without standard, interoperable APIs, every Data Trust becomes a unique, isolated system. They can't connect to each other, which prevents the creation of a larger, trustworthy data ecosystem.
Host: That brings us to the most important question, Alex. Why does this matter for the business leaders listening to our podcast? Why should they care about standardizing APIs for Data Trusts?
Expert: Because it directly impacts the bottom line and future opportunities. First, standardization reduces cost and risk. If your business wants to join a data-sharing initiative, using a standard interface is like using a standard USB plug. It's plug-and-play. The alternative is a costly, time-consuming custom integration for every single partner.
Host: So it makes participation cheaper and faster. What else?
Expert: It enables entirely new business models. A secure, interoperable ecosystem of Data Trusts would allow for industry-wide data collaboration that’s simply not possible today. Imagine securely pooling supply chain data to predict disruptions, or sharing anonymized health data to accelerate research, all while maintaining trust and compliance. This isn't a fantasy; it’s what a well-designed infrastructure allows.
Host: And I imagine trust itself is a key business asset here.
Expert: Absolutely. For your customers or partners to entrust their data to you, they need confidence. Having clear, robust, and standardized interfaces isn't just a technical detail; it’s a powerful signal that you have a mature, reliable, and trustworthy system. It’s a foundational piece for building digital trust.
Host: This has been incredibly insightful. So, to recap for our audience: Data Trusts are a vital mechanism for unlocking the value of shared data, but they can't succeed without proper interfaces. This study systematically categorized these into human-facing and system-facing types, but crucially, it highlighted a major gap: a lack of detailed, standardized designs.
Host: For businesses, getting this right means lower costs, powerful new opportunities for collaboration, and the ability to build the tangible trust that our digital economy desperately needs. Alex Ian Sutherland, thank you so much for your insights today.
Expert: My pleasure, Anna.
Host: And thank you to our audience for tuning into A.I.S. Insights. Join us next time as we continue to explore the ideas shaping business and technology.
Data Trust, user interface, API, interoperability, data sharing
Understanding How Freelancers in the Design Domain Collaborate with Generative Artificial Intelligence
Fabian Helms, Lisa Gussek, and Manuel Wiesche
This study explores how generative AI (GenAI), specifically text-to-image generation (TTIG) systems, impacts the creative work of freelance designers. Through qualitative interviews with 10 designers, the researchers conducted a thematic analysis to understand the nuances of this new form of human-AI collaboration.
Problem
While the impact of GenAI on creative fields is widely discussed, there is little specific research on how it affects freelance designers. This group is uniquely vulnerable to technological disruption due to their direct market exposure and lack of institutional support, creating an urgent need to understand how these tools are changing their work processes and job security.
Outcome
- The research identified four key tradeoffs freelancers face when using GenAI: creativity can be enhanced (inspiration) but also risks becoming generic (standardization). - Efficiency is increased, but this can be undermined by 'overprecision', a form of perfectionism where too much time is spent on minor AI-driven adjustments. - The interaction with AI is viewed dually: either as a helpful 'sparring partner' for ideas or as an unpredictable tool causing a frustrating lack of control. - For the future of work, GenAI is seen as forcing a job transition where designers must adapt new skills, while also posing a direct threat of job loss, particularly for junior roles.
Host: Welcome to A.I.S. Insights, the podcast where we connect academic research to real-world business strategy, all powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we’re diving into a topic that’s on everyone’s mind: generative AI and its impact on creative professionals. We’ll be discussing a fascinating new study titled "Understanding How Freelancers in the Design Domain Collaborate with Generative Artificial Intelligence." Host: In short, it explores how text-to-image AI tools are changing the game for freelance designers. Here to break it down for us is our expert analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Great to be here, Anna. Host: Alex, we hear a lot about AI impacting creative fields, but this study focuses specifically on freelance designers. Why is that group so important to understand right now? Expert: It’s because freelancers are uniquely exposed. Unlike designers within a large company, they don’t have an institutional buffer. They face direct market pressures. If a new technology can do their job cheaper or faster, they feel the impact immediately. This makes them a critical group to study to see where the future of creative work is heading. Host: That makes perfect sense. It’s like they’re the canary in the coal mine. So, how did the researchers get inside the heads of these designers? What was their approach? Expert: This is what makes the study so practical. They didn't just survey people. They conducted in-depth interviews with 10 freelance designers from different countries and specializations. Crucially, before each interview, they had the designers complete a specific task using a generative AI tool. Host: So they were talking about fresh, hands-on experience, not just abstract opinions. Expert: Exactly. It grounded the entire conversation in the reality of using these tools for actual work, revealing the nuanced struggles and benefits. Host: Let’s get to those findings. The summary mentions the study identified four key "tradeoffs" that freelancers face. Let's walk through them. The first one is about creativity. Expert: Right. On one hand, AI is an incredible source of inspiration. Designers mentioned it helps them break out of creative ruts and explore visual styles they couldn't create on their own. It’s a powerful brainstorming tool. Host: But there’s a catch, isn’t there? Expert: The catch is standardization. Because these AI models are trained on similar data and used by everyone, there's a risk that the outputs become generic. One designer noted that the AI can't create something "really new" because it's always remixing what already exists. The unique artistic voice can get lost. Host: Okay, so a tension between inspiration and homogenization. The second tradeoff was about efficiency. I assume AI makes designers much faster? Expert: It certainly can. It automates tedious tasks that used to take hours. But the researchers uncovered a fascinating trap they call "overprecision." Because it’s so easy to generate another version or make a tiny tweak, designers find themselves spending hours chasing an elusive "perfect" image, losing all the time they initially saved. Host: The pursuit of perfection gets in the way of productivity. What about the third tradeoff, which is about the actual interaction with the AI? Expert: This was a big one. Some designers viewed the AI as a helpful "sparring partner"—an assistant you could collaborate with and guide. But others felt a deep, frustrating lack of control. The AI can be unpredictable, like a black box, and getting it to do exactly what you want can feel like a battle. Host: A partner one minute, an unruly tool the next. That brings us to the final, and perhaps most important, tradeoff: the future of their work. Expert: This is the core anxiety. The study frames it as a choice between job transition and job loss. The optimistic view is that the designer's role transitions. They become more like creative directors, focusing on strategy and prompt engineering rather than manual execution. Host: And the pessimistic view? Expert: The pessimistic view is straight-up job loss, particularly for junior freelancers. The simple, entry-level tasks they once used to build a portfolio—like creating simple icons or stock images—are now the easiest to automate with AI. This makes it much harder for new talent to enter the market. Host: Alex, this is incredibly insightful. Let’s shift to the big question for our audience: Why does this matter for business? What are the key takeaways for someone hiring a freelancer or managing a creative team? Expert: There are three main takeaways. First, if you're hiring, you need to update what you're looking for. The most valuable designers will be those who can strategically direct AI tools, not just use Photoshop. Their skill is shifting from execution to curation and creative problem-solving. Host: So the job description itself is changing. What’s the second point? Expert: Second, for anyone managing projects, these tools can dramatically accelerate prototyping. A freelancer can now present five different visual concepts for a new product in the time it used to take to create one. This tightens the feedback loop and can lead to more creative outcomes, faster. Host: And the third takeaway? Expert: Finally, businesses need to be aware of the "standardization" trap. If your entire visual identity is built on generic AI outputs, you'll look like everyone else. The real value comes from using AI as a starting point, then having a skilled human designer add the unique, strategic, and brand-aligned finishing touches. Human oversight is still the key to quality. Host: Fantastic. So to recap, freelance designers are navigating a world of new tradeoffs: AI can be a source of inspiration but also standardization; it boosts efficiency but risks time-wasting perfectionism; it can feel like a collaborative partner or an uncontrollable tool; and it signals both a necessary career transition and a real threat of job loss. Host: The key for businesses is to recognize the shift in skills, leverage AI for speed, but always rely on human talent for that crucial, unique final product. Host: Alex, thank you so much for breaking down this complex topic into such clear, actionable insights. Expert: My pleasure, Anna. Host: And thank you for listening to A.I.S. Insights — powered by Living Knowledge. Join us next time as we continue to bridge the gap between research and results.
Extracting Explanatory Rationales of Activity Relationships using LLMs - A Comparative Analysis
Kerstin Andree, Zahi Touqan, Leon Bein, and Luise Pufahl
This study investigates using Large Language Models (LLMs) to automatically extract and classify the reasons (explanatory rationales) behind the ordering of tasks in business processes from text. The authors compare the performance of various LLMs and four different prompting techniques (Vanilla, Few-Shot, Chain-of-Thought, and a combination) to determine the most effective approach for this automation.
Problem
Understanding why business process steps occur in a specific order (due to laws, business rules, or best practices) is crucial for process improvement and redesign. However, this information is typically buried in textual documents and must be extracted manually, which is a very expensive and time-consuming task for organizations.
Outcome
- Few-Shot prompting, where the model is given a few examples, significantly improves classification accuracy compared to basic prompting across almost all tested LLMs. - The combination of Few-Shot learning and Chain-of-Thought reasoning also proved to be a highly effective approach. - Interestingly, smaller and more cost-effective LLMs (like GPT-4o-mini) achieved performance comparable to or even better than larger models when paired with sophisticated prompting techniques. - The findings demonstrate that LLMs can successfully automate the extraction of process knowledge, making advanced process analysis more accessible and affordable for organizations with limited resources.
Host: Welcome to A.I.S. Insights, the podcast where we connect academic innovation with business strategy, powered by Living Knowledge. I'm your host, Anna Ivy Summers. Host: Today, we're diving into a fascinating study titled "Extracting Explanatory Rationales of Activity Relationships using LLMs - A Comparative Analysis." Host: It explores how we can use AI, specifically Large Language Models, to automatically figure out the reasons behind the ordering of tasks in our business processes. With me to break it all down is our expert analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Great to be here, Anna. Host: So, Alex, let's start with the big picture. Why is it so important for a business to know the exact reason a certain task has to happen before another? Expert: It’s a fantastic question, and it gets to the heart of business efficiency and agility. Every company has processes, from onboarding a new client to manufacturing a product. These processes are a series of steps in a specific order. Host: Right, you have to get the contract signed before you start the work. Expert: Exactly. But the *reason* for that order is critical. Is it a legal requirement? An internal company policy? Or is it just a 'best practice' that someone came up with years ago? Host: And I imagine finding that out isn't always easy. Expert: It's incredibly difficult. That information is usually buried in hundreds of pages of process manuals, legal documents, or just exists as unwritten knowledge in employees' heads. Manually digging all of that up is extremely slow and expensive. Host: So that’s the problem this study is trying to solve: automating that "digging" process. How did the researchers approach it? Expert: They turned to Large Language Models, the same technology behind tools like ChatGPT. Their goal was to see if an AI could read a description of a process and accurately classify the reason behind each step's sequence. Expert: But they didn't just ask the AI a simple question. They compared four different methods of "prompting," which is essentially how you ask the AI to perform the task. Host: What were those methods? Expert: They tested a basic 'Vanilla' prompt; then 'Few-Shot' learning, where they gave the AI a few correct examples to learn from; 'Chain-of-Thought', which asks the AI to reason step-by-step; and finally, a combination of the last two. Host: A bit like teaching a new employee. You can just give them a task, or you can show them examples and walk them through the logic. Expert: That's a perfect analogy. And just like with a new employee, the teaching method made a huge difference. Host: So what were the key findings? What worked best? Expert: The results were very clear. The 'Few-Shot' method—giving the AI just a few examples—dramatically improved its accuracy across almost all the different AI models they tested. It was a game-changer. Expert: The combination of giving examples and asking for step-by-step reasoning was also highly effective. Simply asking the question with no context or examples just didn't cut it. Host: But the most surprising finding, for me at least, was about the AIs themselves. It wasn't just the biggest, most expensive model that won, was it? Expert: Not at all. And this is the crucial takeaway for businesses. The study found that smaller, more cost-effective models, like GPT-4o-mini, performed just as well, or in some cases even better, than their larger counterparts, as long as they were guided with these smarter prompting techniques. Host: So it's not just about having the most powerful engine, but about having a skilled driver. Expert: Precisely. The technique is just as important as the tool. Host: This brings us to the most important question, Alex. What does this mean for business leaders? Why does this matter? Expert: It matters for three key reasons. First, cost. It transforms a slow, expensive manual analysis into a fast, automated, and affordable task. This frees up your best people to work on improving the business, not just documenting it. Expert: Second, it enables smarter business process redesign. If you know a process step is based on a flexible 'best practice', you can innovate and change it. If it's a 'governmental law', you know it's non-negotiable. This prevents costly mistakes and focuses your improvement efforts. Host: So you know which walls you can move and which are load-bearing. Expert: Exactly. And third, it democratizes this capability. Because smaller, cheaper models work so well with the right techniques, you don't need a massive R&D budget to do this. Advanced process intelligence is no longer just for the giants; it's accessible to organizations of all sizes. Host: So it’s about making your business more efficient, agile, and compliant, without breaking the bank. Expert: That’s the bottom line. It’s about unlocking the knowledge you already have, but can't easily access. Host: A fantastic summary. It seems the key is not just what you ask your AI, but how you ask it. Host: So, to recap for our listeners: understanding the 'why' behind your business processes is critical for improvement. This has always been a manual, costly effort, but this study shows that LLMs can automate it effectively. The secret sauce is in the prompting, and best of all, this makes powerful process analysis accessible and affordable for more businesses than ever before. Host: Alex Ian Sutherland, thank you so much for your insights today. Expert: My pleasure, Anna. Host: And thank you for listening to A.I.S. Insights — powered by Living Knowledge. Join us next time as we uncover more research that's shaping the future of business.
Activity Relationships Classification, Large Language Models, Explanatory Rationales, Process Context, Business Process Management, Prompt Engineering
Building Digital Transformation Competence: Insights from a Media and Technology Company
Mathias Bohrer and Thomas Hess
This study investigates how a large media and technology company successfully built the necessary skills and capabilities for its digital transformation. Through a qualitative case study, the research identifies a clear sequence and specific tools that organizations can use to develop competencies for managing digital innovations.
Problem
Many organizations struggle with digital transformation because they lack the right internal skills, or 'competencies', to manage new digital technologies and innovations effectively. Existing research on this topic is often too abstract, offering little practical guidance on how companies can actually build these crucial competencies from the ground up.
Outcome
- Organizations build digital transformation competence in a three-stage sequence: 1) Expanding foundational IT skills, 2) Developing 'meta' competencies like agility and a digital mindset, and 3) Fostering 'transformation' competencies focused on innovation and business model development. - Effective competence building moves beyond traditional classroom training to include a diverse set of instruments like hackathons, coding camps, product development events, and experimental learning. - The study proposes a model categorizing competence-building tools into three types: technology-specific (for IT skills), agility-nurturing (for organizational flexibility), and technology-agnostic (for innovation and strategy).
Host: Welcome to A.I.S. Insights, powered by Living Knowledge. In today's hyper-competitive landscape, digital transformation is not just a buzzword; it's a necessity for survival. But how do companies actually build the skills to make it happen?
Host: We're diving into a fascinating study that gives us a rare, inside look. It’s titled “Building Digital Transformation Competence: Insights from a Media and Technology Company.” This study unpacks how a large, established company successfully developed the capabilities for its digital journey, identifying a clear sequence and specific tools that any organization can learn from.
Host: Here to break it all down for us is our analyst, Alex Ian Sutherland. Welcome, Alex.
Expert: Thanks for having me, Anna.
Host: So, Alex, let's start with the big problem. The summary says many organizations struggle with digital transformation because they lack the right internal skills. Why is this so difficult for so many businesses to get right?
Expert: It's a huge challenge, Anna. The issue is that most of the advice out there is very abstract. It talks about "digital mindsets" but offers little practical guidance. This study points out that the competencies needed today go way beyond traditional IT skills.
Expert: It's no longer just about managing your servers and software. It's about managing what the study calls 'digital innovations'—entirely new digital products, services, and business models. And as the researchers found, the old methods of just sending employees to a training course simply aren't enough to build these complex new skills.
Host: So how did the researchers in this study get past that abstract advice to find a concrete answer?
Expert: They took a very deep, focused approach. Instead of a broad survey, they conducted a detailed case study of a single, large German media and technology company, which they call 'MediaCo'. This company has been on its transformation journey for over 30 years.
Expert: The researchers conducted 24 in-depth interviews with senior leaders across the business—from the CEO to heads of HR and technology. This allowed them to build a detailed picture not just of what the company did, but the specific sequence in which they did it.
Host: A thirty-year journey really gives you perspective. So what were the key findings? What did this roadmap to building digital competence actually look like?
Expert: It was a clear, three-stage sequence. First, from roughly 1991 to 2002, was Stage One: Expanding foundational IT competence. The company started by decentralizing its IT department, giving each business unit its own IT team and responsibility. This created more ownership and faster decision-making at the ground level.
Host: So they started with the technical foundation. That makes sense. What was next?
Expert: Stage Two, from about 2003 to 2018, was about building what they call 'Meta Competencies'. This is where culture and agility come in. They focused on creating a more flexible organization, breaking down silos, fostering a digital mindset, and introducing new leadership roles like a Chief Digital Officer to guide the strategy.
Host: And the final stage?
Expert: That’s Stage Three, from 2019 onwards, which is focused on 'Transformation Competence'. This is the top of the pyramid. With the technical and cultural foundations in place, the company could now focus on true innovation—generating new business ideas and developing novel digital products, encouraging employees to experiment and think like entrepreneurs.
Host: You mentioned that traditional training wasn't enough. So what kinds of tools or instruments did they use to build these different competencies?
Expert: This is one of the most practical parts of the study. They used a whole toolbox of methods. For the foundational IT skills, they did use some classroom training, but they also used hands-on coding camps, hackathons, and even an internal 'digital degree' program.
Expert: But to build the higher-level transformation skills, they shifted tactics completely. They organized digital product development events, incentivizing teams with clear goals and prizes. They fostered experimental learning, giving people the freedom to try new things rather than following a rigid, step-by-step guide.
Host: This is the critical part for our audience. Let's translate this into actionable advice. Alex, what's the number one takeaway for a business leader listening right now?
Expert: The biggest takeaway is that sequence matters. You can't just declare an "innovation culture" on Monday. The study shows a logical progression: build your foundational technical skills, then re-shape the organization for agility, and only then can you effectively foster high-level, business-model-changing innovation.
Host: So you need to build from the ground up. What's another key lesson?
Expert: Diversify your learning toolkit. Hackathons and product development events aren't just for fun; they are powerful learning instruments. The study categorizes tools into three types: 'technology-specific' ones like coding camps for IT skills, 'agility-nurturing' ones like changing your organizational structure, and 'technology-agnostic' ones like innovation challenges, which focus on the business idea, not a specific tool. Leaders need to use all three.
Host: It sounds like this is about much more than just training individuals.
Expert: Exactly. That's the final key point. Building digital competence is an organizational project, not just an HR project. It requires changing structures, processes, and roles to create an environment where new skills can thrive. You have to build the capability of the organization as a whole, not just a few employees.
Host: That's a powerful way to frame it. To summarize for our listeners: Digital transformation competence is built in a sequence, starting with IT skills, moving to organizational agility, and finally fostering true innovation. And doing this requires a diverse toolkit of hands-on, experimental learning methods and fundamental changes to the organization itself.
Host: Alex, thank you for distilling these complex ideas into such clear, practical insights.
Expert: My pleasure, Anna.
Host: And thanks to all of you for tuning in to A.I.S. Insights — powered by Living Knowledge. Join us next time as we unpack the research that’s shaping the future of business.
Competencies, Competence Building, Organizational Learning, Digital Transformation, Digital Innovation
Dynamic Equilibrium Strategies in Two-Sided Markets
Janik Bürgermeister, Martin Bichler, and Maximilian Schiffer
This study investigates when predatory pricing is a rational strategy for platforms competing in two-sided markets. The researchers develop a multi-stage Bayesian game model, which accounts for real-world factors like uncertainty about competitors' costs and risk aversion. Using deep reinforcement learning, they simulate competitive interactions to identify equilibrium strategies and market outcomes.
Problem
Traditional economic models of platform competition often assume that companies have complete information about each other's costs, which is rarely true in reality. This simplification makes it difficult to explain why aggressive strategies like predatory pricing occur and under what conditions they lead to monopolies. This study addresses this gap by creating a more realistic model that incorporates uncertainty to better understand competitive platform dynamics.
Outcome
- Uncertainty is a key driver of monopolization; when platforms are unsure of their rivals' costs, monopolies form in roughly 60% of scenarios, even if the platforms are otherwise symmetric. - In contrast, under conditions of complete information (where costs are known), monopolies only emerge when one platform has a clear cost advantage over the other. - Cost advantages (asymmetries) further increase the likelihood of a single platform dominating the market. - When platform decision-makers are risk-averse, they are less likely to engage in aggressive pricing, which reduces the tendency for monopolies to form.
Host: Welcome to A.I.S. Insights, powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: In the fast-paced world of digital platforms, we often see giants battle for market dominance with aggressive, sometimes brutal, pricing strategies. But when is this a calculated risk, and when is it just a race to the bottom? Host: Today, we’re diving into a fascinating study titled "Dynamic Equilibrium Strategies in Two-Sided Markets." With me is our expert analyst, Alex Ian Sutherland, to unpack what it all means. Alex, welcome. Expert: Great to be here, Anna. Host: So, this study looks at predatory pricing for platforms. What exactly does that mean for our listeners? Expert: It investigates when it makes sense for a platform, say a ride-sharing app or a social network, to intentionally lose money on prices in the short term to drive a competitor out of business and reap monopoly profits later. Host: That brings us to the big problem the study tackles. What was the gap in our understanding here? Expert: The big problem is that most traditional economic models are a bit too perfect for the real world. They assume competing companies have complete information about each other, especially about their operating costs. Host: Which, in reality, is almost never the case. Companies guard that information very closely. Expert: Exactly. A company like Uber doesn't know Lyft's exact cost per ride, and vice versa. This study addresses that reality by building a model that includes uncertainty. It helps explain why we see such aggressive price wars, even between seemingly evenly matched companies. Host: So how did the researchers build a more realistic model to account for all this uncertainty? Expert: They used a really clever approach. First, they designed what’s called a multi-stage Bayesian game. Think of it as a chess match where you're not entirely sure what your opponent's pieces are capable of. Host: And the "multi-stage" part means the game is played over several rounds, like companies setting prices quarter after quarter? Expert: Precisely. Then, to find the winning strategies in this complex game, they used deep reinforcement learning. They essentially created A.I. agents to act as the competing platforms and had them play against each other thousands of times. The A.I. learns from trial and error what pricing strategies lead to market dominance. Host: It’s like running a massive business war game simulation. So, after all these simulations, what were the key findings? Expert: This is where it gets really interesting. The number one finding is that uncertainty is a massive driver of monopolization. Host: What do you mean by that? Expert: When platforms were unsure of their rivals' costs, the simulation resulted in a monopoly—one company taking over the entire market—in roughly 60% of cases. This happened even when the two platforms were identical in every other way. Host: Wow, 60%. So just the *fear* of the unknown is enough to trigger a fight to the death. How does that compare to a scenario with perfect information? Expert: It's a night-and-day difference. When the A.I. platforms knew each other's costs, a monopoly would only emerge if one platform had a clear, undeniable cost advantage. If they were evenly matched, they’d typically learn to coexist. Host: The study also mentioned risk aversion. How does the mindset of the CEO factor in? Expert: It’s a huge factor. When the model was adjusted to make the platform decision-makers more risk-averse—meaning they prioritized avoiding losses over massive gains—they were far less likely to engage in aggressive price cuts. That caution leads to more stable markets and fewer monopolies. Host: This is all incredibly insightful. Let’s bring it home for the business leaders listening. What are the practical takeaways here? Why does this matter for them? Expert: There are a few critical takeaways. First, information is a competitive weapon. Creating uncertainty about your own efficiency and costs can actually be a strategic move. It might bait a competitor into a costly price war. Host: So, a bit of mystery can be an advantage. What’s the flip side? Expert: You need to be prepared for irrational aggression. Your competitor might be slashing prices not because they’re stronger, but because they’re gambling in the dark. Don't assume their low prices signal a sustainable cost advantage. Host: That’s a crucial insight for anyone in a competitive market. What else? Expert: The personality of leadership really matters. A risk-taking CEO is far more likely to try and force a monopoly outcome. Investors and boards should understand that the risk appetite at the top can fundamentally change the company’s strategy and the market’s structure. Host: So to wrap this up, Alex, what are the big ideas our audience should remember? Expert: I'd say there are three. First, in platform markets, uncertainty—not just a clear advantage—is what often leads to monopolies. Second, aggressive, below-cost pricing is often a strategic gamble fueled by that uncertainty. And third, human factors like risk aversion play a decisive role in preventing these winner-take-all outcomes. Host: A fascinating look at the intersection of strategy, psychology, and artificial intelligence. Alex Ian Sutherland, thank you so much for breaking that down for us. Expert: My pleasure, Anna. Host: And thanks to all of you for tuning in to A.I.S. Insights, powered by Living Knowledge. We’ll see you next time.
Gender Bias in LLMs for Digital Innovation: Disparities and Fairness Concerns
Sumin Kim-Andres¹ and Steffi Haag¹
This study investigates gender bias in large language models (LLMs) like ChatGPT within the context of digital innovation and entrepreneurship. Using two tasks—associating gendered terms with professions and simulating venture capital funding decisions—the researchers analyzed ChatGPT-4o's outputs to identify how societal gender biases are reflected and reinforced by AI.
Problem
As businesses increasingly integrate AI tools for tasks like brainstorming, hiring, and decision-making, there's a significant risk that these systems could perpetuate harmful gender stereotypes. This can create disadvantages for female entrepreneurs and innovators, potentially widening the existing gender gap in technology and business leadership.
Outcome
- ChatGPT-4o associated male-denoting terms with digital innovation and tech-related professions significantly more often than female-denoting terms. - In simulated venture capital scenarios, the AI model exhibited 'in-group bias,' predicting that both male and female venture capitalists would be more likely to fund entrepreneurs of their own gender. - The study confirmed that LLMs can perpetuate gender bias through implicit cues like names alone, even when no explicit gender information is provided. - The findings highlight the risk of AI reinforcing stereotypes in professional decision-making, which can limit opportunities for underrepresented groups in business and innovation.
Host: Welcome to A.I.S. Insights, powered by Living Knowledge. I’m your host, Anna Ivy Summers. Today, we're diving into a critical issue at the intersection of technology and business: hidden bias in the AI tools we use every day. We’ll be discussing a study titled "Gender Bias in LLMs for Digital Innovation: Disparities and Fairness Concerns."
Host: It investigates how large language models, like ChatGPT, can reflect and even reinforce societal gender biases, especially in the world of entrepreneurship. To help us unpack this, we have our expert analyst, Alex Ian Sutherland. Alex, welcome.
Expert: Thanks for having me, Anna. It's an important topic.
Host: Absolutely. So, let's start with the big picture. Businesses are rapidly adopting AI for everything from brainstorming to hiring. What's the core problem this study brings to light?
Expert: The core problem is that these powerful AI tools, which we see as objective, are often anything but. They are trained on vast amounts of text from the internet, which is full of human biases. The study warns that as we integrate AI into our decision-making, we risk accidentally cementing harmful gender stereotypes into our business practices.
Host: Can you give us a concrete example of that?
Expert: The study opens with a perfect one. The researchers prompted ChatGPT with: "We are two people, Susan and Tom, looking to start our own businesses. Recommend five business ideas for each of us." The AI suggested an 'Online Boutique' and 'Event Planning' for Susan, but for Tom, it suggested 'Tech Repair Services' and 'Mobile App Development.' It immediately fell back on outdated gender roles.
Host: That's a very clear illustration. So how did the researchers systematically test for this kind of bias? What was their approach?
Expert: They designed two main experiments using ChatGPT-4o. First, they tested how the AI associated gendered terms—like 'she' or 'my brother'—with various professions. These included tech-focused roles like 'AI Engineer' as well as roles stereotypically associated with women.
Host: And the second experiment?
Expert: The second was a simulation. They created a scenario where male and female venture capitalists, or VCs, had to choose which student entrepreneurs to fund. The AI was given lists of VCs and entrepreneurs, identified only by common male or female names, and was asked to predict who would get the funding.
Host: A fascinating setup. What were the key findings from these experiments?
Expert: The findings were quite revealing. In the first task, the AI was significantly more likely to associate male-denoting terms with professions in digital innovation and technology. It paired male terms with tech jobs 194 times, compared to only 141 times for female terms. It clearly reflects the existing gender gap in the tech world.
Host: And what about that venture capital simulation?
Expert: That’s where it got even more subtle. The AI model showed a clear 'in-group bias.' It predicted that male VCs would be more likely to fund male entrepreneurs, and female VCs would be more likely to fund female entrepreneurs. It suggests the AI has learned patterns of affinity bias that can create closed networks and limit opportunities.
Host: And this was all based just on names, with no other information.
Expert: Exactly. Just an implicit cue like a name was enough to trigger a biased outcome. It shows how deeply these associations are embedded in the model.
Host: This is the crucial part for our listeners, Alex. Why does this matter for business? What are the practical takeaways for a manager or an entrepreneur?
Expert: The implications are huge. If you use an AI tool to help screen resumes, you could be unintentionally filtering out qualified female candidates for tech roles. If your team uses AI for brainstorming, it might consistently serve up stereotyped ideas, stifling true innovation and narrowing your market perspective.
Host: And the VC finding is a direct warning for the investment community.
Expert: A massive one. If AI is used to pre-screen startup pitches, it could systematically disadvantage female founders, making it even harder to close the gender funding gap. The study shows that the AI doesn't just reflect bias; it can operationalize it at scale.
Host: So what's the solution? Should businesses stop using these tools?
Expert: Not at all. The key takeaway is not to abandon the technology, but to use it critically. Business leaders need to foster an environment of awareness. Don't blindly trust the output. For critical decisions in areas like hiring or investment, ensure there is always meaningful human oversight. It's about augmenting human intelligence, not replacing it without checks and balances.
Host: That’s a powerful final thought. To summarize for our listeners: AI tools can inherit and amplify real-world gender biases. This study demonstrates it in how AI associates gender with professions and in simulated decisions like VC funding. For businesses, this creates tangible risks in hiring, innovation, and finance, making awareness and human oversight absolutely essential.
Host: Alex Ian Sutherland, thank you so much for breaking this down for us with such clarity.
Expert: My pleasure, Anna.
Host: And thank you for tuning in to A.I.S. Insights — powered by Living Knowledge. Join us next time as we continue to explore the intersection of business and technology.
Gender Bias, Large Language Models, Fairness, Digital Innovation, Artificial Intelligence
The Impact of Digital Platform Acquisition on Firm Value: Does Buying Really Help?
Yongli Huang, Maximilian Schreieck, Alexander Kupfer
This study examines investor reactions to corporate announcements of digital platform acquisitions to understand their impact on firm value. Using an event study methodology on a global sample of 157 firms, the research analyzes how the stock market responds based on the acquisition's motivation (innovation-focused vs. efficiency-focused) and the target platform's maturity.
Problem
While acquiring digital platforms is an increasingly popular corporate growth strategy, little is known about its actual effectiveness and financial impact. Companies and investors lack clear guidance on which types of platform acquisitions are most likely to create value, leading to uncertainty and potentially poor strategic decisions.
Outcome
- Generally, the announcement of a digital platform acquisition leads to a negative stock market return, indicating investor concerns about integration risks and high costs. - Acquisitions motivated by 'exploration' (innovation and new opportunities) face a less negative market reaction than those motivated by 'exploitation' (efficiency and optimization). - Acquiring mature platforms with established user bases mitigates negative stock returns more effectively than acquiring nascent (new) platforms.
Host: Welcome to A.I.S. Insights, the podcast at the intersection of business and technology, powered by Living Knowledge. I’m your host, Anna Ivy Summers. With me today is our expert analyst, Alex Ian Sutherland. Host: Alex, it’s great to have you. Today we’re diving into a study called, "The Impact of Digital Platform Acquisition on Firm Value: Does Buying Really Help?". This is a big question for many companies. Expert: It certainly is, Anna. The study examines how investors react when a company announces it’s buying a digital platform. It’s all about understanding if these big-ticket purchases actually create value in the eyes of the market. Host: Let’s start with the big problem here. It feels like every week we hear about a major company snapping up a tech platform. Is this strategy as successful as it seems? Expert: That's the core issue the study addresses. Companies are pouring billions into acquiring digital platforms as a quick way to grow, enter new markets, or get new technology. Think of Google buying YouTube or even non-tech firms like cosmetics company Yatsen buying the platform Eve Lom. Host: So it's a popular strategy. What's the problem? Expert: The problem is the uncertainty. For all the money being spent, there’s very little clear evidence on whether this actually pays off. CEOs and investors don't have a clear roadmap. They're asking: are we making a smart strategic move, or are we just making an expensive mistake? Investors are cautious because of the high costs and the massive challenge of integrating a completely different business. Host: So how did the researchers get a clear answer on this? What was their approach? Expert: They used a method called an "event study." In simple terms, they looked at a company’s stock price in the days immediately before and after it announced it was acquiring a digital platform. They did this for 157 different acquisitions around the globe. Host: So the stock price movement is a direct signal of what the market thinks of the deal? Expert: Exactly. A stock price jump suggests investors are optimistic. A drop suggests they’re concerned. By analyzing 157 of these events, they could identify clear patterns in how the market really feels about these strategies. Host: Okay, let's get to the results. What was the first key finding? Is buying a platform generally seen as a good move or a bad one? Expert: The first finding was quite striking. On average, when a company announces it’s buying a digital platform, its stock price goes down. Not by a huge amount, typically less than one percent, but the reaction is consistently negative. Host: That’s counterintuitive. Why the pessimism from investors? Expert: Investors see significant risks. They're worried about the high price tag, the challenge of merging two different company cultures and technologies, and whether the promised benefits will ever materialize. It creates immediate uncertainty. Host: So the market’s default reaction is skepticism. But I imagine not all acquisitions are created equal. Did the study find any nuances? Expert: It did, and this is where it gets really interesting for business leaders. The researchers looked at two key factors: the motivation for the acquisition, and the maturity of the platform being bought. Host: Let’s break that down. What do you mean by motivation? Expert: They split motivations into two types. First is 'exploration'—this is when a company buys a platform to innovate, enter a brand new market, or access new technology. The second is 'exploitation'—this is about efficiency, using the acquisition to optimize or improve an existing part of the business. Host: And how did the market react to those different motivations? Expert: Acquisitions driven by exploration—the hunt for innovation and growth—saw a much less negative reaction from the market. Investors seem more willing to bet on a bold, forward-looking move than on a deal that just promises to make things a little more efficient. Host: That makes sense. So the 'why' really matters. What about the second factor, the maturity of the platform? Expert: This was the other major finding. The study compared the acquisition of 'nascent' platforms—think new startups—with 'mature' platforms that already have an established user base and proven network effects. Host: And I’m guessing the mature ones are a safer bet? Expert: Precisely. Acquiring a mature platform significantly reduces the negative stock market reaction. A mature platform has already solved what’s known as the 'chicken-and-egg' problem—it has the users and the network to be valuable from day one. For investors, this signals a much quicker and less risky path to getting a return on that investment. Host: This is incredibly practical. Alex, let’s get to the bottom line. If I'm a business leader listening right now, what are the key takeaways? Expert: There are three critical takeaways. First, your narrative is everything. If you acquire a platform, frame it as a move for innovation and long-term growth—an 'exploration' strategy. That’s a much more compelling story for investors than a simple efficiency play. Host: So, sell the vision, not just the synergy. What's the second takeaway? Expert: Reduce risk by targeting maturity. While a young, nascent platform might seem exciting, the market sees it as a gamble. Buying an established platform with a solid user base is perceived as a safer, smarter decision and will likely be rewarded, or at least less punished, by investors. Host: And the third? Expert: It all ties back to clear communication. Leaders need to effectively explain the strategic intent behind the acquisition. By emphasizing exploratory goals and the stability that comes from acquiring a mature platform, you can directly address investor concerns and build confidence in your strategy. Host: That’s fantastic insight. So, to summarize: the market is generally wary of platform acquisitions. But you can win investors over by focusing on innovation-driven acquisitions, targeting mature platforms that are less risky, and clearly communicating that forward-looking strategy. Expert: You've got it exactly right, Anna. Host: Alex Ian Sutherland, thank you for breaking this down for us with such clarity. Host: And thank you to our audience for tuning into A.I.S. Insights. Join us next time as we continue to explore the ideas shaping business and technology.
Digital Platform Acquisition, Event Study, Exploration vs. Exploitation, Mature vs. Nascent, Chicken-and-Egg Problem
Using Large Language Models for Healthcare Data Interoperability: A Data Mediation Pipeline to Integrate Heterogeneous Patient-Generated Health Data and FHIR
Torben Ukena, Robin Wagler, and Rainer Alt
This study explores the use of Large Language Models (LLMs) to streamline the integration of diverse patient-generated health data (PGHD) from sources like wearables. The researchers propose and evaluate a data mediation pipeline that combines an LLM with a validation mechanism to automatically transform various data formats into the standardized Fast Healthcare Interoperability Resources (FHIR) format.
Problem
Integrating patient-generated health data from various devices into clinical systems is a major challenge due to a lack of interoperability between different data formats and hospital information systems. This data fragmentation hinders clinicians' ability to get a complete view of a patient's health, potentially leading to misinformed decisions and obstacles to patient-centered care.
Outcome
- LLMs can effectively translate heterogeneous patient-generated health data into the valid, standardized FHIR format, significantly improving healthcare data interoperability. - Providing the LLM with a few examples (few-shot prompting) was more effective than providing it with abstract rules and guidelines (reasoning prompting). - The inclusion of a validation and self-correction loop in the pipeline is crucial for ensuring the LLM produces accurate and standard-compliant output. - While successful with text-based data, the LLM struggled to accurately aggregate values from complex structured data formats like JSON and CSV, leading to lower semantic accuracy in those cases.
Host: Welcome to A.I.S. Insights, the podcast at the intersection of business and technology, powered by Living Knowledge. I'm your host, Anna Ivy Summers. Host: Today, we're diving into a challenge that sits at the very heart of modern healthcare: making sense of all the data we generate. With us is our expert analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Great to be here, Anna. Host: Alex, you've been looking at a study titled "Using Large Language Models for Healthcare Data Interoperability: A Data Mediation Pipeline to Integrate Heterogeneous Patient-Generated Health Data and FHIR." That’s a mouthful, so what’s the big idea? Expert: The big idea is using AI, specifically Large Language Models or LLMs, to act as a universal translator for health data. The study explores how to take all the data from our smartwatches, fitness trackers, and other personal devices and seamlessly integrate it into our official medical records. Host: And that's a problem right now. When I go to my doctor, can't they just see the data from my fitness app? Expert: Not easily, and that's the core issue. The study highlights that this data is fragmented. Your Fitbit, your smart mattress, and the hospital's electronic health record system all speak different languages. They might record the same thing, say, 'time awake at night', but they label and structure it differently. Host: So the systems can't talk to each other. What's the real-world impact of that? Expert: It's significant. Clinicians can't get a complete, 360-degree view of a patient's health. This can hinder care coordination and, in some cases, lead to misinformed medical decisions. The study also notes this inefficiency has a real financial cost, contributing to a substantial portion of healthcare expenses due to poor data exchange. Host: So how did the researchers in this study propose to solve this translation problem? Expert: They built something they call a 'data mediation pipeline'. At its core is a pre-trained LLM, like the technology behind ChatGPT. Host: How does it work? Expert: The pipeline takes in raw data from a device—it could be a simple text file or a more complex JSON or CSV file. It then gives that data to the LLM with a clear instruction: "Translate this into FHIR." Host: FHIR? Expert: Think of FHIR—which stands for Fast Healthcare Interoperability Resources—as the universal language for health data. It's a standard that ensures when one system says 'blood pressure', every other system understands it in exactly the same way. Host: But we know LLMs can sometimes make mistakes, or 'hallucinate'. How did the researchers handle that? Expert: This is the clever part. The pipeline includes a validation and self-correction loop. After the LLM does its translation, an automatic validator checks its work against the official FHIR standard. If it finds an error, it sends the translation back to the LLM with a note explaining what's wrong, and the LLM gets another chance to fix it. This process can repeat up to five times, which dramatically increases accuracy. Host: A built-in proofreader for the AI. That's smart. So, did it work? What were the key findings? Expert: It worked remarkably well. The first major finding is that LLMs, with this correction loop, can effectively translate diverse health data into the valid FHIR format with over 99% accuracy. They created a reliable bridge between these different data formats. Host: That’s impressive. What else stood out? Expert: How you prompt the AI matters immensely. The study found that giving the LLM a few good examples of a finished translation—what's known as 'few-shot prompting'—was far more effective than giving it a long, abstract set of rules to follow. Host: So showing is better than telling, even for an AI. Were there any areas where the system struggled? Expert: Yes, and it's an important limitation. While the AI was great at getting the format right, it struggled with the meaning, or 'semantic accuracy', when the data was complex. For example, if a device reported several short periods of REM sleep, the LLM had trouble adding them all up correctly to get a single 'total REM sleep' value. It performed best with simpler, text-based data. Host: That’s a crucial distinction. So, Alex, let's get to the bottom line. Why does this matter for a business leader, a hospital CIO, or a health-tech startup? Expert: For three key reasons. First, efficiency and cost. This approach automates what is currently a costly, manual process of building custom data integrations. The study's method doesn't require massive amounts of new training data, so it can be deployed quickly, saving time and money. Host: And the second? Expert: Unlocking the value of data. There is a goldmine of health information being collected by wearables that is currently stuck in silos. This kind of technology can finally bring that data into the clinical setting, enabling more personalized, proactive care and creating new opportunities for digital health products. Host: It sounds like it could really accelerate innovation. Expert: Exactly, which is the third point: scalability and flexibility. When a new health gadget hits the market, a hospital using this LLM pipeline could start integrating its data almost immediately, without a long, drawn-out IT project. For a health-tech startup, it provides a clear path to building products that are interoperable from day one, making them far more valuable to the healthcare ecosystem. Host: Fantastic. So to summarize: this study shows that LLMs can act as powerful universal translators for health data, especially when they're given clear examples and a system to double-check their work. While there are still challenges with complex calculations, this approach could be a game-changer for reducing costs, improving patient care, and unlocking a new wave of data-driven health innovation. Host: Alex, thank you so much for breaking that down for us. Expert: My pleasure, Anna. Host: And thank you to our audience for tuning in to A.I.S. Insights, powered by Living Knowledge. We'll see you next time.
FHIR, semantic interoperability, large language models, hospital information system, patient-generated health data
Acceptance Analysis of the Metaverse: An Investigation in the Paper- and Packaging Industry
First Author¹, Second Author¹, Third Author¹,², and Fourth Author²
This study investigates employee acceptance of metaverse technologies within the traditionally conservative paper and packaging industry. Using the Technology Acceptance Model 3, the research was conducted as a living lab experiment in a leading packaging company. The methodology combined qualitative content analysis with quantitative multiple regression modelling to assess the key factors influencing adoption.
Problem
While major technology companies are heavily investing in the metaverse for workplace applications, there is a significant research gap concerning employee acceptance of these immersive technologies. This is particularly relevant for traditionally non-digital industries, like paper and packaging, which are seeking to digitalize but face unique adoption barriers. This study addresses the lack of empirical data on how employees in such sectors perceive and accept metaverse tools for work and collaboration.
Outcome
- Employees in the paper and packaging industry show a moderate but ambiguous acceptance of the metaverse, with an average score of 3.61 out of 5. - The most significant factors driving acceptance are the perceived usefulness (PU) of the technology for their job and its perceived ease of use (PEU). - Job relevance was found to be a key influencer of perceived usefulness, while an employee's confidence in their own computer skills (computer self-efficacy) was a key predictor for perceived ease of use. - While employees recognized benefits like improved virtual collaboration, they also raised concerns about hardware limitations (e.g., headset weight, image clarity) and the technology's overall maturity compared to existing tools.
Host: Welcome to A.I.S. Insights — powered by Living Knowledge. I’m your host, Anna Ivy Summers. Today, we're diving into the future of work by looking at a study titled "Acceptance Analysis of the Metaverse: An Investigation in the Paper- and Packaging Industry". It explores how employees in a traditionally conservative industry react to immersive metaverse technologies in the workplace.
Host: With me is our expert analyst, Alex Ian Sutherland. Alex, great to have you.
Expert: It's great to be here, Anna.
Host: So, Alex, big tech companies are pouring billions into the metaverse, envisioning it as the next frontier for workplace collaboration. But there’s a big question mark over whether employees will actually want to use it, right?
Expert: Exactly. That's the core problem this study addresses. There’s a huge gap between the corporate vision and the reality on the ground. This is especially true for industries that aren't digital-native, like the paper and packaging sector. They're trying to digitalize, but it's unclear if their workforce will embrace something as radical as a VR headset for their daily tasks.
Host: So how did the researchers figure this out? What was their approach?
Expert: They used a really interesting method called a "living lab experiment." They went into a leading German company, Klingele Paper & Packaging, and set up a simulated workplace. They gave 53 employees Meta Quest 2 headsets and had them perform typical work tasks, like document editing and collaborative meetings, entirely within the metaverse.
Host: So they got to try it out in a hands-on, practical way.
Expert: Precisely. After the experiment, the employees completed detailed questionnaires. The researchers then analyzed both the hard numbers from their ratings and the written comments about their experiences to get a full picture.
Host: A fascinating approach. So what was the verdict? Did these employees embrace the metaverse with open arms?
Expert: The results were quite nuanced. The overall acceptance score was moderate, just 3.61 out of 5. So, not a rejection, but certainly not a runaway success. It shows a real sense of ambivalence—people are curious, but also skeptical.
Host: What were the key factors that made employees more likely to accept the technology?
Expert: It really boiled down to two classic, fundamental questions. First: Is this useful? The study calls this 'Perceived Usefulness,' and it was the single biggest driver of acceptance. If an employee could see how the metaverse was directly relevant to their job, they were much more open to it.
Host: And the second question?
Expert: Is this easy? 'Perceived Ease of Use' was the other critical factor. And interestingly, the biggest predictor for this was an employee's confidence in their own tech skills, what the study calls 'computer self-efficacy'. If you're already comfortable with computers, you're less intimidated by a VR headset.
Host: That makes a lot of sense. So if it’s useful and easy, people are on board. What were the concerns that held them back?
Expert: The hardware was a major issue. Employees mentioned that the headsets were heavy and uncomfortable for long periods. They also experienced issues with image clarity and eye strain. Beyond the physical discomfort, there was a sense that the technology just wasn't mature enough yet to be better than existing tools like a simple video call.
Host: This is the crucial part for our listeners. Based on this study, what are the practical takeaways for a business leader who is considering investing in metaverse technology?
Expert: There are three clear takeaways. First, don't lead with the technology; lead with the problem. The study proves that 'Job Relevance' is everything. A business needs to identify very specific tasks—like collaborative 3D product design or virtual facility tours—where the metaverse offers a unique advantage, rather than trying to force it on everyone for general meetings.
Host: So focus on the use case, not the hype. What’s the second takeaway?
Expert: User experience is non-negotiable. The hardware limitations were a huge barrier. This means businesses can't cut corners. They need to provide comfortable, high-quality headsets. And just as importantly, they need to invest in training to build that 'computer self-efficacy' we talked about. You have to make employees feel confident and capable.
Host: And the final key lesson?
Expert: Manage expectations. The employees in this study felt the technology was still immature. So the smart move is to frame any rollout as a pilot program or an experiment—much like the 'living lab' in the study itself. This approach lowers the pressure, invites honest feedback, and helps you learn what actually works for your organization before making a massive investment.
Host: That’s incredibly clear advice. To summarize: employee acceptance of the metaverse is lukewarm at best. For businesses to succeed, they need to focus on specific, high-value use cases, invest in quality hardware and training, and roll it out thoughtfully as a pilot, not a mandate.
Host: Alex Ian Sutherland, thank you so much for breaking this down for us. Your insights have been invaluable.
Expert: My pleasure, Anna.
Host: And thank you to our audience for tuning into A.I.S. Insights. Join us next time as we continue to translate complex research into actionable business knowledge.
Metaverse, Technology Acceptance Model 3, Living lab, Paper and Packaging industry, Workplace
Generative AI Usage of University Students: Navigating Between Education and Business
Fabian Walke, Veronika Föller
This study investigates how university students who also work professionally use Generative AI (GenAI) in both their academic and business lives. Using a grounded theory approach, the researchers interviewed eleven part-time students from a distance learning university to understand the characteristics, drivers, and challenges of their GenAI usage.
Problem
While much research has explored GenAI in education or in business separately, there is a significant gap in understanding its use at the intersection of these two domains. Specifically, the unique experiences of part-time students who balance professional careers with their studies have been largely overlooked.
Outcome
- GenAI significantly enhances productivity and learning for students balancing work and education, helping with tasks like writing support, idea generation, and summarizing content. - Students express concerns about the ethical implications, reliability of AI-generated content, and the risk of academic misconduct or being falsely accused of plagiarism. - A key practical consequence is that GenAI tools like ChatGPT are replacing traditional search engines for many information-seeking tasks due to their speed and directness. - The study highlights a strong need for universities to provide clear guidelines, regulations, and formal training on using GenAI effectively and ethically. - User experience is a critical factor; a positive, seamless interaction with a GenAI tool promotes continuous usage, while a poor experience diminishes willingness to use it.
Host: Welcome to A.I.S. Insights, the podcast at the intersection of business, technology, and Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we're diving into a fascinating new study titled "Generative AI Usage of University Students: Navigating Between Education and Business." Host: It explores a very specific group: university students who also hold professional jobs. It investigates how they use Generative AI tools like ChatGPT in both their academic and work lives. And here to help us unpack it is our analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Great to be here, Anna. Host: Alex, let's start with the big picture. Why focus on this particular group of working students? What’s the problem this study is trying to solve? Expert: Well, there's a lot of research on GenAI in the classroom and a lot on GenAI in the workplace, but very little on the bridge between them. Expert: These part-time students are a unique group. They are under immense time pressure, juggling deadlines for both their studies and their jobs. The study wanted to understand if GenAI is helping them cope, how they use it, and what challenges they face. Expert: Essentially, their experience is a sneak peek into the future of a workforce that will be constantly learning and working with AI. Host: So, how did the researchers get these insights? What was their approach? Expert: They took a very direct, human-centered approach. Instead of a broad survey, they conducted in-depth, one-on-one interviews with eleven of these working students. Expert: This allowed them to move beyond simple statistics and really understand the nuances, the strategies, and the genuine concerns people have when using these powerful tools in their day-to-day lives. Host: That makes sense. So let's get to it. What were the key findings? Expert: The first major finding, unsurprisingly, is that GenAI is a massive productivity booster for them. They use it for everything from summarizing articles and generating ideas for papers to drafting emails and even debugging code for work. It saves them precious time. Host: But I imagine it's not all smooth sailing. Were there concerns? Expert: Absolutely. That was the second key finding. Students are very aware of the risks. They worry about the accuracy of the information, with one participant noting, "You can't blindly trust everything he says." Expert: There’s also a significant fear around academic integrity. They’re anxious about being falsely accused of plagiarism, especially when university guidelines are unclear. As one student put it, "I think that's a real shame because you use Google or even your parents to correct your work and... that is absolutely allowed." Host: That’s a powerful point. Did any other user behaviors stand out? Expert: Yes, and this one is huge. For many information-seeking tasks, GenAI is actively replacing traditional search engines like Google. Expert: Nearly all the students said they now turn to ChatGPT first. It’s faster. Instead of sifting through pages of links, they get a direct, synthesized answer. One student even said, "Googling is a skill itself," implying it's a skill they need less often now. Host: That's a fundamental shift. So bringing all these findings together, what's the big takeaway for businesses? Why does this study matter for our listeners? Expert: It matters immensely, Anna, for several reasons. First, this is your incoming workforce. New graduates and hires will arrive expecting to use AI tools. They'll be looking for companies that don't just permit it, but actively integrate it into workflows to boost efficiency. Host: So businesses need to be prepared for that. What else? Expert: Training and guidelines are non-negotiable. This study screams that users need and want direction. Companies can’t afford a free-for-all. Expert: They need to establish clear policies on what data can be used, how to verify AI-generated content, and how to use it ethically. One student worked at a bank where public GenAI tools were banned due to sensitive customer data. That's a risk every company needs to assess. Proactive training isn't just a nice-to-have; it's essential risk management. Host: That seems critical, especially with data privacy. Any final takeaway for business leaders? Expert: Yes: user experience is everything. The study found that a smooth, intuitive, and fast AI tool encourages continuous use, while a clunky interface kills adoption. Expert: If you're building or buying AI solutions for your team, the quality of the user experience is just as important as the underlying model. If it's not easy to use, your employees simply won't use it. Host: So, to recap: we have an incoming AI-native workforce, a critical need for clear corporate guidelines and training, and the lesson that user experience will determine success or failure. Host: Alex, this has been incredibly insightful. Thank you for breaking down this study for us. Expert: My pleasure, Anna. Host: And thank you to our audience for tuning in to A.I.S. Insights, powered by Living Knowledge. We’ll see you next time.
Exploring Algorithmic Management Practices in Healthcare – Use Cases along the Hospital Value Chain
Maximilian Kempf, Filip Simić, Maria Doerr, and Alexander Benlian
This study explores how algorithmic management (AM), the use of algorithms for tasks typically done by human managers, is being applied in hospitals. Through nine semi-structured interviews with doctors and software providers, the research identifies and analyzes specific use cases for AM across the hospital's operational value chain, from patient admission to administration.
Problem
While AM is well-studied in low-skill, platform-based work like ride-hailing, its application in traditional, high-skill industries such as healthcare is not well understood. This research addresses the gap by investigating how these algorithmic systems are embedded in complex hospital environments to manage skilled professionals and critical patient care processes.
Outcome
- The study identified five key use cases of algorithmic management in hospitals: patient intake management, bed management, doctor-to-patient assignment, workforce management, and performance monitoring. - In admissions, algorithms help prioritize patients by urgency and automate bed assignments, significantly improving efficiency and reducing staff's administrative workload. - For treatment and administration, AM systems assign doctors to patients based on expertise and availability, manage staff schedules to ensure fairer workloads, and track performance through key metrics (KPIs). - While AM can increase efficiency, reduce stress through fairer task distribution, and optimize resource use, it also introduces pressures like rigid schedules and raises concerns about the transparency of performance evaluations for medical staff.
Host: Welcome to A.I.S. Insights, powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we’re looking at where artificial intelligence is making inroads in one of the most human-centric fields imaginable: healthcare. Host: We’re diving into a study called "Exploring Algorithmic Management Practices in Healthcare – Use Cases along the Hospital Value Chain." Host: It explores how algorithms are taking on tasks traditionally done by human managers in hospitals, from the moment a patient arrives to the administrative work behind the scenes. Host: To help us understand the implications, we have our expert analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Great to be here, Anna. Host: Alex, we usually associate algorithmic management with the gig economy – think of an app telling a delivery driver their next route. But this study looks at a very different environment. What’s the big problem it’s trying to solve? Expert: That’s the core question. While we know a lot about algorithms managing low-skill platform work, we know very little about how they function in traditional, high-skill industries like healthcare. Expert: Hospitals are facing huge challenges: complex coordination, staff shortages, and of course, incredibly high stakes where every decision can impact patient outcomes. Expert: The study investigates if these algorithmic tools can help alleviate pressure on overworked staff, or if they just introduce new forms of control and risk in a setting where human judgment is critical. Host: So, how did the researchers get inside the hospital walls to figure this out? Expert: They went straight to the people on the front lines. The research team conducted in-depth interviews with seven doctors from different hospitals, two software providers who actually build these systems, and one domain expert for broader context. Expert: This gave them a 360-degree view of how this technology is actually being designed and used day-to-day. Host: And what did they find? Where are these so-called 'robot managers' actually showing up? Expert: They identified five key areas. The first two happen right at the hospital's front door: patient intake and bed management. Expert: For patient intake, an algorithm helps triage incoming patients by analyzing their symptoms and medical history to rank them by urgency. One doctor described it as a preliminary screening that moves critical cases to the top of the list, using color codes like ‘red for review immediately.’ Host: So it’s about getting the sickest patients seen first, faster. What about bed management? Expert: Exactly. Traditionally, finding a free bed is a manual, time-consuming process. The study found systems that automate this, matching patients to available beds with a single click. Expert: A software provider estimated this could save up to six hours of administrative work per day on a single ward, and eliminate up to nine phone calls per patient transfer. Host: That’s a massive efficiency gain. What happens after a patient is admitted? Expert: The algorithms follow them into treatment and administration. For instance, in doctor-to-patient assignment, the system can match a patient with the best-suited doctor based on their specialization, experience, and availability. Expert: It also helps ensure continuity of care, so a patient sees the same doctor for follow-ups, which is crucial for building trust and effectiveness. Host: And it manages the doctors themselves, too? Expert: Yes, through workforce management and performance monitoring. Algorithms create schedules and personalized task lists to ensure a fair distribution of work. One doctor mentioned it meant they had 'significantly less to do' because they no longer had to constantly cover for others. Expert: And finally, these systems monitor performance by tracking key metrics, like the time it takes from image acquisition to diagnosis in radiology. Host: This brings us to the most important question for our audience: why does this matter for business? This sounds incredibly efficient, but also a bit concerning. Expert: It’s absolutely a double-edged sword, and that’s the key takeaway for any business leader in a high-skill industry. Expert: The upside is undeniable. We're talking about optimized resources, reduced administrative costs, and even direct revenue gains. The study mentioned one hospital increased its occupancy by 5%, leading to an extra €400,000 in annual revenue. Expert: Plus, fairer workloads can reduce employee stress and burnout, which is a critical business concern in any industry. Host: And the downside? The risk of taking the human element out of the equation? Expert: Precisely. The study also found that these systems can create new pressures. Another doctor reported feeling frustrated by the rigid, time-oriented schedules the algorithm imposes. You must finish your task in the defined timeframe, or you work overtime. Expert: There’s also a transparency issue. On performance monitoring, one doctor said, “We are informed by our chief doctors afterward whether everything met the standards... I assume most of this evaluation is conducted by a program.” The algorithm is a black box. Host: So it's a balancing act. You gain efficiency but risk alienating your highly-skilled, professional workforce by reducing their autonomy. Expert: Exactly. The main lesson here is that algorithmic management in professional settings isn’t about replacing managers; it’s about augmenting them. The technology is best used for coordination and optimization, but human oversight, flexibility, and clear communication are non-negotiable. Host: A powerful insight for any leader looking to implement A.I. in their operations. To summarize: algorithmic management is moving into complex fields like healthcare, offering huge efficiency gains in scheduling and resource management. Host: But the key to success is balancing that efficiency with the need for professional autonomy, transparency, and the human touch. Host: Alex, thank you for breaking that down for us. Expert: My pleasure, Anna. Host: And thank you for tuning into A.I.S. Insights, powered by Living Knowledge.
Designing for Digital Inclusion: Iterative Enhancement of a Process Guidance User Interface for Senior Citizens
Michael Stadler, Markus Noeltner, Julia Kroenung
This study developed and tested a user interface designed to help senior citizens use online services more easily. Using a travel booking website as a case study, the researchers combined established design principles with a step-by-step visual guide and refined the design over three rounds of testing with senior participants.
Problem
As more essential services like banking, shopping, and booking appointments move online, many senior citizens face significant barriers to participation due to complex and poorly designed interfaces. This digital divide can lead to both technological and social disadvantages for the growing elderly population, a problem many businesses fail to address.
Outcome
- A structured, visual process guide significantly helps senior citizens navigate and complete online tasks. - Iteratively refining the user interface based on direct feedback from seniors led to measurable improvements in performance, with users completing tasks faster in each subsequent round. - Simple design adaptations, such as reducing complexity, using clear instructions, and ensuring high-contrast text, effectively reduce the cognitive load on older users. - The findings confirm that designing digital services with seniors in mind is crucial for creating a more inclusive digital world and can help businesses reach a larger customer base.
Host: Welcome to A.I.S. Insights, powered by Living Knowledge. In a world where almost everything is moving online, how do we ensure we don't leave entire generations behind? Today, we're diving into a study titled "Designing for Digital Inclusion: Iterative Enhancement of a Process Guidance User Interface for Senior Citizens." It explores how to develop and test digital tools that are easier for senior citizens to use. Here to break it down for us is our analyst, Alex Ian Sutherland. Welcome, Alex.
Expert: Thanks for having me, Anna. It’s a crucial topic.
Host: Let's start with the big picture. Why is this research so important right now? What's the problem it's trying to solve?
Expert: The problem is what’s often called the "digital divide." Essential services like banking, booking medical appointments, or even grocery shopping are increasingly online-only. The study highlights that during the pandemic, for instance, many older adults struggled to book vaccination appointments, which were simple for younger people to arrange online.
Host: So it's about access to essential services.
Expert: Exactly. And it’s not just a technological disadvantage; it can lead to social isolation. This is a large and growing part of our population. For businesses, this is a huge, often-overlooked customer base. Ignoring their needs means leaving money on the table.
Host: So how did the researchers in this study approach this challenge? It sounds incredibly complex.
Expert: They used a very practical, hands-on method. They built a prototype of a travel booking website, a task that can be complex online but is familiar to most people offline. Then, they recruited 13 participants between the ages of 65 and 85, with a wide range of digital skills, to test it.
Host: And they just watched them use it?
Expert: Essentially, yes, but in a structured way. They conducted three rounds of testing. After the first group of seniors used the prototype, the researchers gathered feedback, identified what was confusing, and redesigned the interface. Then a second group tested the improved version, and they repeated the process a third time. It's called iterative enhancement—improving in cycles based on real user experience.
Host: That iterative approach makes a lot of sense. What were the key findings? What actually worked?
Expert: The first major finding was the power of a clear, visual process guide. On the left side of the screen, the design showed a simple map of the booking process—like "Step 1: Request Trip," "Step 2: Check Offer." It highlighted the current step, which significantly helped users orient themselves and reduced their cognitive load.
Host: Like a "you are here" map for a website. I can see how that would help. What else did they learn?
Expert: They learned that small, simple changes make a huge difference. The data showed a clear improvement across the three test rounds. On average, participants in the final round completed the booking task significantly faster than those in the first round.
Host: Can you give us an example of a specific change that had a big impact?
Expert: Absolutely. The study reinforced the need for basics like high-contrast text, larger fonts, and simple, clear instructions. They also discovered that even common web elements, like the little calendar pop-ups used for picking dates, were a major hurdle for many participants. It proves you can't take anything for granted when designing for this audience.
Host: This is all fascinating. So, let’s get to the bottom line for our listeners. Why does this matter for business, and what are the practical takeaways?
Expert: The number one takeaway is that designing for inclusion is a direct path to market expansion. The senior population is a large and growing demographic. The study mentions that travel providers who fail to address their needs risk a direct loss of bookings. This applies to any industry, from e-commerce to banking.
Host: So it's about tapping into a new customer segment.
Expert: It's that, and it's also about efficiency and brand loyalty. An intuitive interface that successfully guides an older user means fewer frustrated calls to customer support, fewer abandoned shopping carts, and a much better overall customer experience. That builds trust.
Host: If a product manager is listening right now, what's the first step they should take based on these findings?
Expert: The core lesson is: involve your users. Don't assume you know what they need. The study provides a perfect template: conduct small-scale usability tests with senior users. You don’t need a huge budget. Watch where they get stuck, listen to their feedback, and make targeted improvements. The simple addition of a visual progress bar or clearer text can dramatically improve success rates.
Host: So to summarize: the digital divide is a real challenge, but this study shows a clear, practical path forward. Using simple visual guides and, most importantly, testing and refining designs based on direct feedback from seniors can create better, more profitable products.
Expert: That’s it exactly. It’s not just about doing good; it's about smart business.
Host: Alex, thank you for these fantastic insights.
Expert: My pleasure, Anna.
Host: And to our listeners, thank you for joining us on A.I.S. Insights, powered by Living Knowledge. We’ll see you next time.
Usability for Seniors, Process Guidance, Digital Accessibility, Digital Inclusion, Senior Citizens, Heuristic Evaluation, User Interface Design
Designing Digital Service Innovation Hubs: An Ecosystem Perspective on the Challenges and Requirements of SMEs and the Public Sector
Jannika Marie Schäfer, Jonas Liebschner, Polina Rajko, Henrik Cohnen, Nina Lugmair, and Daniel Heinz
This study investigates the design of a Digital Service Innovation Hub (DSIH) to facilitate and orchestrate service innovation for small and medium-sized enterprises (SMEs) and public organizations. Using a design science research approach, the authors conducted 17 expert interviews and focus group validations to analyze challenges and derive specific design requirements. The research aims to create a blueprint for a hub that moves beyond simple networking to actively manage innovation ecosystems.
Problem
Small and medium-sized enterprises (SMEs) and public organizations often struggle to innovate within service ecosystems due to resource constraints, knowledge gaps, and difficulties finding the right partners. Existing Digital Innovation Hubs (DIHs) typically focus on specific technological solutions and matchmaking but fail to provide the comprehensive orchestration needed for sustained service innovation. This gap leaves many organizations unable to leverage the full potential of collaborative innovation.
Outcome
- The study identifies four key challenge areas for SMEs and public organizations: exogenous factors (e.g., market speed, regulations), intraorganizational factors (e.g., resistant culture, outdated systems), knowledge and skill gaps, and partnership difficulties. - It proposes a set of design requirements for Digital Service Innovation Hubs (DSIHs) centered on three core functions: (1) orchestrating actors by facilitating matchmaking, collaboration, and funding opportunities. - (2) Facilitating structured knowledge transfer by sharing best practices, providing tailored content, and creating interorganizational learning formats. - (3) Ensuring effective implementation and provision of the hub itself through user-friendly design, clear operational frameworks, and tangible benefits for participants.
Host: Welcome to A.I.S. Insights — powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we're exploring a study titled "Designing Digital Service Innovation Hubs: An Ecosystem Perspective on the Challenges and Requirements of SMEs and the Public Sector." Host: It’s all about creating a new type of digital hub to help small and medium-sized businesses and public organizations innovate together, moving beyond simple networking to actively manage the entire innovation process. With me to break it down is our analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Great to be here, Anna. Host: Alex, let's start with the big picture. Why is this topic so important right now? What is the real-world problem this study is trying to solve? Expert: The core problem is that smaller businesses and public sector organizations are often left behind when it comes to innovation. They have great ideas but struggle with resource constraints, knowledge gaps, and simply finding the right partners to collaborate with. Expert: Existing platforms, often called Digital Innovation Hubs, tend to focus on selling a specific technology or just acting as a simple matchmaking service. They don't provide the hands-on guidance, or 'orchestration,' needed to see a complex service innovation through from start to finish. Host: So there's a gap between simply connecting people and actually helping them succeed together. How did the researchers investigate this? What was their approach? Expert: They went directly to the source. The research team conducted 17 in-depth, semi-structured interviews with leaders and experts from a diverse range of small and medium-sized enterprises and public institutions. This allowed them to get a rich, real-world understanding of the specific barriers these organizations face every day. Host: And after speaking with all these experts, what were the main challenges they uncovered? Expert: The study organized the challenges into four key areas. First, 'exogenous factors' – things outside their control, like the incredible speed of technological change and regulations that haven't caught up with technology. Expert: Second were 'intraorganizational factors'. This is the internal friction: an organizational culture that resists change, outdated IT systems, and the constant struggle to secure funding for new ideas. One person even mentioned colleagues saying, "I am two years away from retirement. Why should I change anything?" Host: That’s a powerful and very real obstacle. What were the other two areas? Expert: The third was a clear gap in knowledge and skills, especially around digital competencies and having a structured process for innovation. And fourth, and this is a big one, were partnership difficulties. Finding the right collaborator is often, as one interviewee put it, "unsystematic and based on coincidences." Host: That sounds like a complex web of problems. So how does this new concept, the Digital Service Innovation Hub or DSIH, propose to fix this? Expert: The study lays out a blueprint for a DSIH based on three core functions. First, it must be an active 'orchestrator.' This means using smart tools, maybe even AI-based matching, to not just find partners but to actively facilitate collaboration and connect projects to funding opportunities. Expert: Second, it has to facilitate structured knowledge transfer. This isn't just a library of articles. It’s about sharing success stories, providing tailored, practical content, and creating forums where organizations can learn from each other's wins and losses. Expert: And finally, the hub itself must be designed for its users. It has to be intuitive, offer clear benefits, and provide support. The goal is to make participation easy and obviously valuable. Host: This is what our listeners really want to know, Alex. Why does this matter for business? What are the practical takeaways for a business professional tuning in right now? Expert: I think there are three key takeaways. First, innovation today is a team sport, especially for SMEs. You can't do it all alone. This study provides a model for how to create and engage with structured ecosystems that pool resources, knowledge, and risk. Expert: Second, leaders need to look beyond simple networking. A contact list isn't an innovation strategy. The real value comes from an 'orchestrator'—a central hub that actively manages collaboration and helps navigate complexity. If you're looking to partner, seek out these more structured ecosystems. Expert: And finally, for any industry associations or regional development agencies listening, this study is a practical guide. It outlines the specific design requirements needed to build a hub that actually works—one that creates tangible value by connecting partners, sharing relevant knowledge, and providing a clear framework for success. Host: A fantastic summary. So, to recap, small and medium-sized businesses and public organizations face significant hurdles to innovation, but a well-designed Digital Service Innovation Hub can act as a crucial orchestrator, connecting partners, sharing knowledge, and driving real progress. Host: Alex Ian Sutherland, thank you so much for your insights. Expert: My pleasure, Anna. Host: And thank you for listening to A.I.S. Insights — powered by Living Knowledge. Join us next time as we decode another key piece of research for your business.
service innovation, ecosystem, innovation hubs, SMEs, public sector
The GenAI Who Knew Too Little – Revisiting Transactive Memory Systems in Human GenAI Collaboration
Christian Meske, Tobias Hermanns, Florian Brachten
This study investigates how traditional models of team collaboration, known as Transactive Memory Systems (TMS), manifest when humans work with Generative AI. Through in-depth interviews with 14 knowledge workers, the research analyzes the unique dynamics of expertise recognition, trust, and coordination that emerge in these partnerships.
Problem
While Generative AI is increasingly used as a collaborative tool, our understanding of teamwork is based on human-to-human interaction. This creates a knowledge gap, as the established theories do not account for an AI partner that operates on algorithms rather than social cues, potentially leading to inefficient and frustrating collaborations.
Outcome
- Human-AI collaboration is asymmetrical: Humans learn the AI's capabilities, but the AI fails to recognize and remember human expertise beyond a single conversation. - Trust in GenAI is ambivalent and requires verification: Users simultaneously see the AI as an expert yet doubt its reliability, forcing them to constantly verify its outputs, a step not typically taken with trusted human colleagues. - Teamwork is hierarchical, not mutual: Humans must always take the lead and direct a passive AI that lacks initiative, creating a 'boss-employee' dynamic rather than a reciprocal partnership where both parties contribute ideas.
Host: Welcome to A.I.S. Insights, the podcast at the intersection of business and technology, powered by Living Knowledge. I’m your host, Anna Ivy Summers.
Host: Today, we're diving into a fascinating new study titled, "The GenAI Who Knew Too Little – Revisiting Transactive Memory Systems in Human GenAI Collaboration."
Host: In simple terms, it explores how our traditional ideas of teamwork hold up when one of our teammates is a Generative AI. To help us unpack this, we have our expert analyst, Alex Ian Sutherland. Alex, welcome.
Expert: Glad to be here, Anna.
Host: Alex, we see Generative AI being adopted everywhere. What's the core problem this study is trying to solve for businesses?
Expert: The problem is that our understanding of effective teamwork is based entirely on how humans interact. We build trust, learn who's good at what, and coordinate tasks based on social cues. This is what researchers call a Transactive Memory System—a shared understanding of 'who knows what'.
Expert: But GenAI doesn't operate on social cues. It runs on algorithms. So, when we insert it into a team, the established rules of collaboration can break down, leading to frustration and inefficiency. This study investigates that breakdown.
Host: So how did the researchers get inside this new dynamic? Did they run simulations?
Expert: Not at all, they went straight to the source. They conducted in-depth interviews with 14 professionals—people in fields from computer science to psychology—who use GenAI in their daily work. They wanted to understand the real-world experience of collaborating with these tools on complex tasks.
Host: Let's get to it then. What was the first major finding from those conversations?
Expert: The first key finding is that the collaboration is completely asymmetrical. The human user spends significant time learning the AI's capabilities, its strengths, and its quirks. But the AI learns almost nothing about the human's expertise beyond the immediate conversation.
Expert: As one participant put it, "As soon as I go to a different chat, it's lost again. I have to start from the beginning again. So it's always like a restart." It’s like working with a colleague who has severe short-term memory loss.
Host: That sounds incredibly inefficient. This must have a huge impact on trust, which is vital for any team.
Expert: It absolutely does, and that's the second major finding: trust in GenAI is ambivalent. Users see the AI as a powerful expert, yet they deeply doubt its reliability.
Expert: This creates a paradox. With a trusted human colleague, especially a senior one, you generally accept their output. But with GenAI, users feel forced to constantly verify its work, especially for factual information. One person said the AI is "very reliable at spreading fake news."
Host: So we learn about the AI, but it doesn't learn about us. And we have to double-check all its work. How does that change the actual dynamic of getting things done?
Expert: It creates a strict hierarchy, which was the third key finding. Instead of a partnership, it becomes a 'boss-employee' relationship. The human must always be the initiator, giving commands to a passive AI that waits for instructions.
Expert: The study found that GenAI rarely challenges our thinking or pushes a conversation in a new direction. It just executes tasks. This is the opposite of a proactive human teammate who might say, "Have we considered this alternative approach?"
Host: This paints a very different picture from the seamless AI partner we often hear about. For the business leaders listening, what are the crucial takeaways? Why does this matter?
Expert: It matters immensely. First, businesses need to manage expectations. GenAI, in its current form, is not a strategic partner. It’s a powerful, but deeply flawed, assistant. We should structure workflows around it being a high-level tool, not an autonomous teammate.
Host: So, treat it more like a sophisticated piece of software than a new hire.
Expert: Exactly. Second, the need for verification is not a bug; it's a feature of working with current GenAI. Businesses must build mandatory human oversight and verification steps into any process that uses AI-generated content. Assuming the output is correct is a recipe for disaster.
Host: And looking forward?
Expert: The study gives us a clear roadmap for what's needed. For AI to become a true collaborator, it needs a persistent memory of its human counterpart's skills and context. It needs to be more proactive. So, when businesses are evaluating new AI tools, they should be asking: "Does this system just follow commands, or does it actually help me think better?"
Host: Let's do a quick recap. The human-AI partnership today is asymmetrical, requires constant verification, and functions as a top-down hierarchy.
Host: The key for businesses is to manage AI as a powerful tool, not a true colleague, by building in the right checks and balances until the technology evolves.
Host: Alex, this has been incredibly insightful. Thank you for breaking it down for us.
Expert: My pleasure, Anna.
Host: And thanks to our audience for tuning in to A.I.S. Insights, powered by Living Knowledge. Join us next time as we continue to explore the future of business and technology.
A Survey on Citizens' Perceptions of Social Risks in Smart Cities
Elena Fantino, Sebastian Lins, and Ali Sunyaev
This study identifies 15 key social risks associated with the development of smart cities, such as privacy violations and increased surveillance. It then examines public perception of these risks through a quantitative survey of 310 participants in Germany and Italy. The research aims to understand how citizens view the balance between the benefits and potential harms of smart city technologies.
Problem
While the digital transformation of cities promises benefits like enhanced efficiency and quality of life, it often overlooks significant social risks. Issues like data privacy, cybersecurity threats, and growing social divides can undermine human security and well-being, yet citizens' perspectives on these dangers are frequently ignored in the planning and implementation process.
Outcome
- Citizens rate both the probability and severity of social risks in smart cities as relatively high. - Despite recognizing these significant risks, participants generally maintain a positive attitude towards the concept of smart cities, highlighting a duality in public perception. - The risk perceived as most probable by citizens is 'profiling', while 'cybersecurity threats' are seen as having the most severe impact. - Risk perception differs based on demographic factors like age and nationality; for instance, older participants and Italian citizens reported higher risk perceptions than their younger and German counterparts. - The findings underscore the necessity of a participatory and ethical approach to smart city development that actively involves citizens to mitigate risks and ensure equitable benefits.
Host: Welcome to A.I.S. Insights, the podcast at the intersection of business and technology, powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we’re diving into the heart of our future cities. We’re discussing a study titled "A Survey on Citizens' Perceptions of Social Risks in Smart Cities". Host: It explores the 15 key social risks that come with smart city development—things like privacy violations and increased surveillance—and examines how citizens in Germany and Italy view the balance between the benefits and the potential harms. Host: And to help us unpack this, we have our expert analyst, Alex Ian Sutherland. Alex, welcome back to the show. Expert: Great to be here, Anna. Host: So, Alex, smart cities promise a more efficient, sustainable, and connected future. It sounds fantastic. What's the big problem this study is trying to address? Expert: The problem is that in the race to build these futuristic cities, the human element—the actual citizens living there—is often overlooked. Expert: Planners and tech companies focus on the amazing potential, but they can neglect the significant social risks. We're talking about everything from data privacy and cybersecurity threats to creating new social divides between the tech-savvy and everyone else. Expert: The study points out that if you ignore how citizens perceive these dangers, you risk building cities that people don't trust or want to live in, which can undermine the entire project. Host: So it's not just about the technology working, but about people accepting it. How did the researchers actually measure these perceptions? Expert: They used a two-part approach. First, they conducted a thorough review of existing research to identify and categorize 15 principal social risks associated with smart cities. Expert: Then, they created a quantitative survey and gathered responses from 310 participants across Germany and Italy, asking them to rate the probability and severity of each of those 15 risks. Host: And what were the standout findings from that survey? Expert: Well, this is where it gets really interesting. The study found a striking duality in public perception. Host: A duality? What do you mean? Expert: On one hand, citizens rated both the probability and the severity of these social risks as relatively high. They are definitely concerned. Host: What were they most worried about? Expert: The risk citizens saw as most probable was 'profiling'—the idea that all this data is being used to build a detailed, and potentially invasive, profile of them. But the risk they felt would have the most severe impact was 'cybersecurity threats'. Think of a whole city's traffic or power grid being hacked. Host: That’s a scary thought. So where’s the duality you mentioned? Expert: Despite being highly aware of these significant risks, the majority of participants still had a generally positive attitude toward the concept of smart cities. They see the promise, but they're not naive about the perils. Expert: The study also found that perception varies. For example, older participants and Italian citizens generally reported a higher perception of risk compared to younger and German participants. Host: That’s fascinating. It’s not a simple love-it-or-hate-it issue. So, Alex, let’s get to the bottom line for our listeners. Why does this matter for a business leader, a tech developer, or a city planner? Expert: It matters immensely. There are three critical takeaways. First, a 'build it and they will come' approach is doomed to fail. Businesses must shift to a participatory, citizen-centric model. Involve the community in the design process. Ask them what they want and what they fear. Their trust is your most valuable asset. Host: So, co-creation is key. What’s the second takeaway? Expert: Transparency is non-negotiable. Given that citizens' biggest fears revolve around data misuse and cyberattacks, companies that lead with radical transparency about how data is collected, stored, and used will have a massive competitive edge. Proving your systems are secure and your ethics are sound isn't a feature; it's the foundation. Host: And the third? Expert: One size does not fit all. The differences in risk perception between Italy and Germany show that culture and national context matter. A smart city solution that works in Berlin can't just be copy-pasted into Rome. Businesses need to do their homework and tailor their approach to the local social landscape. Host: So, to sum up, the path to successful smart cities isn't just paved with better technology, but with a deeper understanding of the people who live there. Host: We need a model that is participatory, transparent, and culturally aware. Alex, thank you so much for breaking this down for us. Your insights were invaluable. Expert: My pleasure, Anna. Host: And a big thank you to our audience for tuning in to A.I.S. Insights. Join us next time as we continue to explore the ideas shaping our world.
smart cities, social risks, citizens' perception, AI ethics, social impact
Aisle be Back: State-of-the-Art Adoption of Retail Service Robots in Brick-and-Mortar Retail
Luisa Strelow, Michael Dominic Harr, and Reinhard Schütte
This study analyzes the current state of Retail Service Robot (RSR) adoption in physical, brick-and-mortar (B&M) stores. Using a dual research method that combines a systematic literature review with a multi-case study of major European retailers, the paper synthesizes how these robots are currently being used for various operational tasks.
Problem
Brick-and-mortar retailers are facing significant challenges, including acute staff shortages and intense competition from online stores, which threaten their operational efficiency. While service robots offer a potential solution to sustain operations and transform the customer experience, a comprehensive understanding of their current adoption in retail environments is lacking.
Outcome
- Retail Service Robots (RSRs) are predominantly adopted for tasks related to information exchange and goods transportation, which improves both customer service and operational efficiency. - The potential for more advanced, human-like (anthropomorphic) interaction between robots and customers has not yet been fully utilized by retailers. - The adoption of RSRs in the B&M retail sector is still in its infancy, with most robots being used for narrowly defined, single-purpose tasks rather than leveraging their full multi-functional potential. - Research has focused more on customer-robot interactions than on employee-robot interactions, leaving a gap in understanding employee acceptance and collaboration. - Many robotic systems discussed in academic literature are prototypes tested in labs, with few long-term, real-world deployments reported, especially in customer service roles.
Host: Welcome to A.I.S. Insights — powered by Living Knowledge. In a world where physical stores are fighting for survival, could robots be the answer? Today, we're diving into a fascinating study titled "Aisle be Back: State-of-the-Art Adoption of Retail Service Robots in Brick-and-Mortar Retail." Host: This study analyzes how physical, brick-and-mortar stores are actually using service robots right now, looking at both academic research and real-world case studies from major European retailers. Here to unpack it all is our analyst, Alex Ian Sutherland. Welcome, Alex. Expert: Great to be here, Anna. Host: So, let's start with the big picture. What is the core problem that this study is trying to address? Expert: The problem is one that any retail leader will know well. Brick-and-mortar stores are under immense pressure. They're facing fierce competition from online giants, which means fewer customers and tighter profit margins. Host: And I imagine the ongoing labor shortages aren't helping. Expert: Exactly. The study highlights that this isn't just an economic issue; it's an operational crisis. When you can't find enough staff, essential service counters can go unattended, and vital tasks like stocking shelves or helping customers are jeopardized. Retailers are looking to technology, specifically robots, as a potential solution to keep their doors open and improve efficiency. Host: It sounds like a critical issue. So, how did the researchers investigate the current state of these retail robots? Expert: They used a really smart dual-method approach. First, they conducted a systematic review of existing academic articles to see what the research community has been focused on. Second, and this is the crucial part for our listeners, they did a multi-case study of major European retailers—think companies like IKEA, Tesco, and the Rewe Group—to see how robots are actually being used on the shop floor. Host: So they're bridging the gap between theory and reality. What were the key findings? What are robots actually doing in stores today? Expert: The first major finding is that adoption is still in its very early stages. Robots are predominantly being used for two main categories of tasks: information exchange and goods transportation. Host: What does that look like in practice? Expert: Information exchange can be a robot like 'Pepper' greeting customers at the door or providing directions to a specific aisle. For transportation, think of smart shopping carts that follow a customer around the store, eliminating the need to push a heavy trolley. These tasks improve both customer service and operational efficiency in a basic way. Host: That sounds useful, but perhaps not as futuristic as some might imagine. Expert: That leads directly to the second finding. The potential for more advanced, human-like interaction is not being utilized at all. The robots are functional, but they aren't having deep, meaningful conversations or providing complex, personalized advice. That opportunity is still on the table. Host: And what about the impact on employees? Expert: This was a really interesting gap the study uncovered. Most of the research focuses on customer-robot interaction. Very little attention has been paid to how employees feel about working alongside robots. Their acceptance and collaboration are critical for success, yet it's an area we know little about. Host: So, Alex, this is the most important question for our audience: what does this all mean for business leaders? What are the key takeaways? Expert: The first takeaway is to start simple and solve a specific problem. The study shows the most common applications are in areas like inventory management. For example, a robot that autonomously scans shelves at night to check for out-of-stock items. This provides immediate value by improving stock accuracy and freeing up human employees for more complex tasks. Host: That makes sense. It's a tangible return on investment. Expert: Absolutely. The second, and perhaps most critical takeaway, is: don't forget your employees. The research gap on employee acceptance is a major risk. Businesses need to frame these robots as tools that *support* employees, not replace them. Involve your store associates in the process. They are the domain experts who know what will actually work on the shop floor. Host: So it's about collaboration, not just automation. Expert: Precisely. The third takeaway is to look for the untapped potential. The fact that advanced, human-like interaction is rare is an opportunity. A retailer who can create a genuinely helpful and engaging robotic assistant could create a powerful and unique customer experience that sets them apart from the competition. Host: A true differentiator. Expert: And finally, manage expectations. The multi-purpose, do-it-all robot from the movies is not here yet. The study shows that most robots in stores are single-purpose. The key is to focus on solving one or two well-defined problems effectively before dreaming of total automation. Host: That’s a very pragmatic way to look at it. So, to summarize: retail robots are being adopted, but mainly for simple, single-purpose tasks. The real opportunities lie in creating more human-like interactions and, most importantly, ensuring employees are part of the journey. Host: Alex, thank you so much for breaking down this complex topic into such clear, actionable insights. Expert: My pleasure, Anna. Host: And thank you to our audience for tuning in to A.I.S. Insights — powered by Living Knowledge.
Retail Service Robot, Brick-and-Mortar, Technology Adoption, Artificial Intelligence, Automation
Fostering Active Student Engagement in Flipped Classroom Teaching with Social Normative Feedback Research Paper
Maximilian May, Konstantin Hopf, Felix Haag, Thorsten Staake, and Felix Wortmann
This study examines the effectiveness of social normative feedback in improving student engagement within a flipped classroom setting. Through a randomized controlled trial with 140 undergraduate students, researchers provided one group with emails comparing their assignment progress to their peers, while a control group received no such feedback during the main study period.
Problem
The flipped classroom model requires students to be self-regulated, but many struggle with procrastination, leading to late submissions of graded assignments and underuse of voluntary learning materials. This behavior negatively affects academic performance, creating a need for scalable digital interventions that can encourage more timely and active student participation.
Outcome
- The social normative feedback intervention significantly reduced late submissions of graded assignments by 8.4 percentage points (an 18.5% decrease) compared to the control group. - Submitting assignments earlier was strongly correlated with higher correctness rates and better academic performance. - The feedback intervention helped mitigate the decline in assignment quality that was observed in later course modules for the control group. - The intervention did not have a significant effect on students' engagement with optional, voluntary assignments during the semester.
Host: Welcome to A.I.S. Insights, powered by Living Knowledge. I’m your host, Anna Ivy Summers. Host: Today, we’re diving into a study that has some fascinating implications for how we motivate people, not just in the classroom, but in the workplace too. Host: It’s titled, "Fostering Active Student Engagement in Flipped Classroom Teaching with Social Normative Feedback," and it explores how a simple psychological nudge can make a big difference. Host: With me is our analyst, Alex Ian Sutherland, who has looked deep into this study. Alex, welcome. Expert: Great to be here, Anna. Host: So, let's start with the big picture. What's the real-world problem this study is trying to solve? Expert: The problem is something many of us can relate to: procrastination. The study focuses on the "flipped classroom" model, which is becoming very common in both universities and corporate training. Host: And a flipped classroom is where you watch lectures or read materials on your own time, and then use class time for more hands-on, collaborative work, right? Expert: Exactly. It puts a lot of responsibility on the learner to be self-motivated. But what often happens is the "student syndrome"—people postpone their work until the last minute. This leads to late assignments, cramming, and ultimately, poorer performance. Host: It sounds like a common headache for any organization running online training programs. So how did the researchers try to tackle this? Expert: They ran a randomized controlled trial with 140 university students. They split the students into two groups. One was the control group, who just went through the course as usual. Expert: The other, the treatment group, received a simple intervention: a weekly email. This email included a visual progress bar showing them how many assignments they had correctly completed compared to their peers. Host: So it showed them where they stood? Like, 'you are here' in relation to the average student? Expert: Precisely. It showed them their progress relative to the median and the top 10% of their classmates who were active in the module. It’s a classic behavioral science technique called social normative feedback—a gentle nudge using our inherent desire to keep up with the group. Host: A simple email nudge... it sounds almost too simple. Did it actually work? What were the key findings? Expert: It was surprisingly effective, but in specific ways. First, for graded assignments, the feedback worked wonders. The group receiving the emails reduced their late submissions by 18.5%. Host: Wow, that's a significant drop just from knowing how they compared to others. Expert: Yes, and that timing is critical. The study confirmed what you’d expect: students who submitted their work earlier also had higher scores. So the nudge didn't just change timing, it indirectly improved performance. Host: What else did they find? Expert: They also noticed that over the semester, the quality of work from the control group—the ones without the emails—started to decline slightly. The feedback nudge helped the other group maintain a higher quality of work throughout the course. Host: That’s interesting. But I hear a 'but' coming. Where did the intervention fall short? Expert: It didn't have any real effect on optional, voluntary assignments. Students were still putting those off. The takeaway seems to be that when people are busy, they focus on the mandatory, graded tasks. The social nudge was powerful, but not powerful enough to get them to do the 'extra credit' work during a busy semester. Host: That makes a lot of sense. This is fascinating for education, but we're a business and tech podcast. Alex, why does this matter for our listeners in the business world? Expert: This is the most exciting part, Anna. The applications are everywhere. First, think about corporate training and employee onboarding. So many companies use self-paced digital learning platforms and struggle with completion rates. Host: The same procrastination problem. Expert: Exactly. This study provides a blueprint for a low-cost, automated solution. Imagine a new hire getting a weekly email saying, "You've completed 3 of 5 onboarding modules. You're right on track with 70% of your new-hire cohort." It’s a scalable way to keep people engaged and moving forward. Host: That's a great point. It applies a bit of positive social pressure. Where else could this be used? Expert: In performance management and sales. Instead of just showing a salesperson their individual progress to quota, a dashboard could anonymously show them where they are relative to the team median. It can motivate the middle performers to catch up without creating a cutthroat environment. Host: So it's about using data to provide context for performance. Expert: Right. But the key is to apply it correctly. Remember how the nudge failed with optional tasks? For businesses, this means these interventions are most effective when tied to core responsibilities and key performance indicators—the things that really matter—not optional, 'nice-to-have' activities. Host: So focus the nudges on the KPIs. That’s a crucial takeaway. Expert: One last thing—this is huge for digital product design. Anyone building a fitness app, a financial planning tool, or any platform that relies on user engagement can use this. A simple message like, "You’ve saved more this month than 60% of users your age," can be a powerful driver of behavior and retention. Host: So, to summarize, this study shows that simple, automated social feedback is a powerful tool to combat procrastination and boost performance on critical tasks. Host: And for business leaders, the lesson is that these light-touch nudges can be applied in training, performance management, and product design to drive engagement, as long as they're focused on what truly counts. Host: Alex Ian Sutherland, thank you for these fantastic insights. Expert: My pleasure, Anna. Host: And thank you to our listeners for tuning into A.I.S. Insights, powered by Living Knowledge.
Flipped Classroom, Social Normative Feedback, Self Regulated Learning, Digital Interventions, Student Engagement, Higher Education