AIS Logo
← Back to Library
Analyzing German Parliamentary Speeches: A Machine Learning Approach for Topic and Sentiment Classification

Analyzing German Parliamentary Speeches: A Machine Learning Approach for Topic and Sentiment Classification

Lukas Pätz, Moritz Beyer, Jannik Späth, Lasse Bohlen, Patrick Zschech, Mathias Kraus, and Julian Rosenberger
This study investigates political discourse in the German parliament (the Bundestag) by applying machine learning to analyze approximately 28,000 speeches from the last five years. The researchers developed and trained two separate models to classify the topic and the sentiment (positive or negative tone) of each speech. These models were then used to identify trends in topics and sentiment across different political parties and over time.

Problem In recent years, Germany has experienced a growing public distrust in political institutions and a perceived divide between politicians and the general population. While much political discussion is analyzed from social media, understanding the formal, unfiltered debates within parliament is crucial for transparency and for assessing the dynamics of political communication. This study addresses the need for tools to systematically analyze this large volume of political speech to uncover patterns in parties' priorities and rhetorical strategies.

Outcome - Debates are dominated by three key policy areas: Economy and Finance, Social Affairs and Education, and Foreign and Security Policy, which together account for about 70% of discussions.
- A party's role as either government or opposition strongly influences its tone; parties in opposition use significantly more negative language than those in government, and this tone shifts when their role changes after an election.
- Parties on the political extremes (AfD and Die Linke) consistently use a much higher percentage of negative language compared to centrist parties.
- Parties tend to be most critical (i.e., use more negative sentiment) when discussing their own core policy areas, likely as a strategy to emphasize their priorities and the need for action.
- The developed machine learning models proved highly effective, demonstrating that this computational approach is a feasible and valuable method for large-scale analysis of political discourse.
Natural Language Processing, German Parliamentary, Discourse Analysis, Bundestag, Machine Learning, Sentiment Analysis, Topic Classification