AIS Logo
← Back to Library
Challenges and Mitigation Strategies for AI Startups: Leveraging Effectuation Theory in a Dynamic Environment

Challenges and Mitigation Strategies for AI Startups: Leveraging Effectuation Theory in a Dynamic Environment

Marleen Umminger, Alina Hafner
This study investigates the unique benefits and obstacles encountered by Artificial Intelligence (AI) startups. Through ten semi-structured interviews with founders in the DACH region, the research identifies key challenges and applies effectuation theory to explore effective strategies for navigating the uncertain and dynamic high-tech field.

Problem While investment in AI startups is surging, founders face unique challenges related to data acquisition, talent recruitment, regulatory hurdles, and intense competition. Existing literature often groups AI startups with general digital ventures, overlooking the specific difficulties stemming from AI's complexity and data dependency, which creates a need for tailored mitigation strategies.

Outcome - AI startups face core resource challenges in securing high-quality data, accessing affordable AI models, and hiring skilled technical staff like CTOs.
- To manage costs, founders often use publicly available data, form partnerships with customers for data access, and start with open-source or low-cost MVP models.
- Founders navigate competition by tailoring solutions to specific customer needs and leveraging personal networks, while regulatory uncertainty is managed by either seeking legal support or framing compliance as a competitive advantage to attract enterprise customers.
- Effectuation theory proves to be a relevant framework, as successful founders tend to leverage existing resources and networks (bird-in-hand), form strategic partnerships (crazy quilt), and adapt flexibly to unforeseen events (lemonade) rather than relying on long-term prediction.
Artificial intelligence, Entrepreneurial challenge, Effectuation theory, Qualitative research, AI startups, Mitigation strategies