AIS Logo
← Back to Library
What it takes to control Al by design: human learning

What it takes to control Al by design: human learning

Dov Te'eni, Inbal Yahav, David Schwartz
This study proposes a robust framework, based on systems theory, for maintaining meaningful human control over complex human-AI systems. The framework emphasizes the importance of continual human learning to parallel advancements in machine learning, operating through two distinct modes: a stable mode for efficient operation and an adaptive mode for learning. The authors demonstrate this concept with a method called reciprocal human-machine learning applied to a critical text classification system.

Problem Traditional methods for control and oversight are insufficient for the complexity of modern AI technologies, creating a gap in ensuring that critical AI systems remain aligned with human values and goals. As AI becomes more autonomous and operates in volatile environments, there is an urgent need for a new approach to design systems that allow humans to effectively stay in control and adapt to changing circumstances.

Outcome - The study introduces a framework for human control over AI that operates at multiple levels and in two modes: stable and adaptive.
- Effective control requires continual human learning to match the pace of machine learning, ensuring humans can stay 'in the loop' and 'in control'.
- A method called 'reciprocal human-machine learning' is presented, where humans and AI learn from each other's feedback in an adaptive mode.
- This approach results in high-performance AI systems that are unbiased and aligned with human values.
- The framework provides a model for designing control in critical AI systems that operate in dynamic environments.
Human-AI system, Control, Reciprocal learning, Feedback, Oversight