AIS Logo
← Back to Library
The Danish Business Authority's Approach to the Ongoing Evaluation of Al Systems

The Danish Business Authority's Approach to the Ongoing Evaluation of Al Systems

Oliver Krancher, Per Rådberg Nagbøl, Oliver Müller
This study examines the strategies employed by the Danish Business Authority (DBA), a pioneering public-sector adopter of AI, for the continuous evaluation of its AI systems. Through a case study of the DBA's practices and their custom X-RAI framework, the paper provides actionable recommendations for other organizations on how to manage AI systems responsibly after deployment.

Problem AI systems can degrade in performance over time, a phenomenon known as model drift, leading to inaccurate or biased decisions. Many organizations lack established procedures for the ongoing monitoring and evaluation of AI systems post-deployment, creating risks of operational failures, financial losses, and non-compliance with regulations like the EU AI Act.

Outcome - Organizations need a multi-faceted approach to AI evaluation, as single strategies like human oversight or periodic audits are insufficient on their own.
- The study presents the DBA's three-stage evaluation process: pre-production planning, in-production monitoring, and formal post-implementation evaluations.
- A key strategy is 'enveloping' AI systems and their evaluations, which means setting clear, pre-defined boundaries for the system's use and how it will be monitored to prevent misuse and ensure accountability.
- The DBA uses an MLOps platform and an 'X-RAI' (Transparent, Explainable, Responsible, Accurate AI) framework to ensure traceability, automate deployments, and guide risk assessments.
- Formal evaluations should use deliberate sampling, including random and negative cases, and 'blind' reviews (where caseworkers assess a case without seeing the AI's prediction) to mitigate human and machine bias.
AI evaluation, AI governance, model drift, responsible AI, MLOps, public sector AI, case study