AIS Logo
← Back to Library
Successfully Mitigating AI Management Risks to Scale AI Globally

Successfully Mitigating AI Management Risks to Scale AI Globally

Thomas Hutzschenreuter, Tim Lämmermann, Alexander Sake, Helmuth Ludwig
This study presents an in-depth case study of the industrial AI pioneer Siemens AG to understand how companies can effectively scale artificial intelligence systems. It identifies five critical technology management risks associated with both generative and predictive AI and provides practical recommendations for mitigating them to create company-wide business impact.

Problem Many companies struggle to effectively scale modern AI systems, with over 70% of implementation projects failing to create a measurable business impact. These failures stem from machine learning's unique characteristics, which amplify existing technology management challenges and introduce entirely new ones that firms are often unprepared to handle.

Outcome - Missing or falsely evaluated potential AI use case opportunities.
- Algorithmic training and data quality issues.
- Task-specific system complexities.
- Mismanagement of system stakeholders.
- Threats from provider and system dependencies.
AI management, risk mitigation, scaling AI, generative AI, predictive AI, technology management, case study