AIS Logo
← Back to Library
Unveiling Enablers to the Use of Generative AI Artefacts in Rural Educational Settings: A Socio-Technical Perspective

Unveiling Enablers to the Use of Generative AI Artefacts in Rural Educational Settings: A Socio-Technical Perspective

Pramod K. Patnaik, Kunal Rao, Gaurav Dixit
This study investigates the factors that enable the use of Generative AI (GenAI) tools in rural educational settings within developing countries. Using a mixed-method approach that combines in-depth interviews and the Grey DEMATEL decision-making method, the research identifies and analyzes these enablers through a socio-technical lens to understand their causal relationships.

Problem Marginalized rural communities in developing countries face significant challenges in education, including a persistent digital divide that limits access to modern learning tools. This research addresses the gap in understanding how Generative AI can be practically leveraged to overcome these education-related challenges and improve learning quality in under-resourced regions.

Outcome - The study identified fifteen key enablers for using Generative AI in rural education, grouped into social and technical categories.
- 'Policy initiatives at the government level' was found to be the most critical enabler, directly influencing other key factors like GenAI training for teachers and students, community awareness, and school leadership commitment.
- Six novel enablers were uncovered through interviews, including affordable internet data, affordable telecommunication networks, and the provision of subsidized devices for lower-income groups.
- An empirical framework was developed to illustrate the causal relationships among the enablers, helping stakeholders prioritize interventions for effective GenAI adoption.
Generative AI, Rural, Education, Digital Divide, Interviews, Socio-technical Theory