AIS Logo
← Back to Library
An Automated Identification of Forward Looking Statements on Financial Metrics in Annual Reports

An Automated Identification of Forward Looking Statements on Financial Metrics in Annual Reports

Khanh Le Nguyen, Diana Hristova
This study presents a three-phase automated Decision Support System (DSS) designed to extract and analyze forward-looking statements on financial metrics from corporate 10-K annual reports. The system uses Natural Language Processing (NLP) to identify relevant text, machine learning models to predict future metric growth, and Generative AI to summarize the findings for users. The goal is to transform unstructured narrative disclosures into actionable, metric-level insights for investors and analysts.

Problem Manually extracting useful information from lengthy and increasingly complex 10-K reports is a significant challenge for investors seeking to predict a company's future performance. This difficulty creates a need for an automated system that can reliably identify, interpret, and forecast financial metrics based on the narrative sections of these reports, thereby improving the efficiency and accuracy of financial decision-making.

Outcome - The system extracted forward-looking statements related to financial metrics with 94% accuracy, demonstrating high reliability.
- A Random Forest model outperformed a more complex FinBERT model in predicting future financial growth, indicating that simpler, interpretable models can be more effective for this task.
- AI-generated summaries of the company's outlook achieved a high average rating of 3.69 out of 4 for factual consistency and readability, enhancing transparency for decision-makers.
- The overall system successfully provides an automated pipeline to convert dense corporate text into actionable financial predictions, empowering investors with transparent, data-driven insights.
forward-looking statements, 10-K, financial performance prediction, XAI, GenAI