AIS Logo
← Back to Library
AI Agents as Governance Actors in Data Trusts – A Normative and Design Framework

AI Agents as Governance Actors in Data Trusts – A Normative and Design Framework

Arnold F. Arz von Straussenburg, Jens J. Marga, Timon T. Aldenhoff, and Dennis M. Riehle
This study proposes a design theory to safely and ethically integrate Artificial Intelligence (AI) agents into the governance of data trusts. The paper introduces a normative framework that unifies fiduciary principles, institutional trust, and AI ethics. It puts forward four specific design principles to guide the development of AI systems that can act as responsible governance actors within these trusts, ensuring they protect beneficiaries' interests.

Problem Data trusts are frameworks for responsible data management, but integrating powerful AI systems creates significant ethical and security challenges. AI can be opaque and may have goals that conflict with the interests of data owners, undermining the fairness and accountability that data trusts are designed to protect. This creates a critical need for a governance model that allows organizations to leverage AI's benefits without compromising their fundamental duties to data owners.

Outcome - The paper establishes a framework to guide the integration of AI into data trusts, ensuring AI actions align with ethical and fiduciary responsibilities.
- It introduces four key design principles for AI agents: 1) Fiduciary alignment to prioritize beneficiary interests, 2) Accountability through complete traceability and oversight, 3) Transparent explainability for all AI decisions, and 4) Autonomy-preserving oversight to maintain robust human supervision.
- The research demonstrates that AI can enhance efficiency in data governance without eroding stakeholder trust or ethical standards if implemented correctly.
- It provides actionable recommendations, such as automated audits and dynamic consent mechanisms, to ensure the responsible use of AI within data ecosystems for the common good.
Data Trusts, Normative Framework, AI Governance, Fairness, AI Agents