AIS Logo
← Back to Library
The GenAI Who Knew Too Little – Revisiting Transactive Memory Systems in Human GenAI Collaboration

The GenAI Who Knew Too Little – Revisiting Transactive Memory Systems in Human GenAI Collaboration

Christian Meske, Tobias Hermanns, Florian Brachten
This study investigates how traditional models of team collaboration, known as Transactive Memory Systems (TMS), manifest when humans work with Generative AI. Through in-depth interviews with 14 knowledge workers, the research analyzes the unique dynamics of expertise recognition, trust, and coordination that emerge in these partnerships.

Problem While Generative AI is increasingly used as a collaborative tool, our understanding of teamwork is based on human-to-human interaction. This creates a knowledge gap, as the established theories do not account for an AI partner that operates on algorithms rather than social cues, potentially leading to inefficient and frustrating collaborations.

Outcome - Human-AI collaboration is asymmetrical: Humans learn the AI's capabilities, but the AI fails to recognize and remember human expertise beyond a single conversation.
- Trust in GenAI is ambivalent and requires verification: Users simultaneously see the AI as an expert yet doubt its reliability, forcing them to constantly verify its outputs, a step not typically taken with trusted human colleagues.
- Teamwork is hierarchical, not mutual: Humans must always take the lead and direct a passive AI that lacks initiative, creating a 'boss-employee' dynamic rather than a reciprocal partnership where both parties contribute ideas.
Generative AI, Transactive Memory Systems, Human-AI Collaboration, Knowledge Work, Trust in AI, Expertise Recognition, Coordination