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Abstract

Online collaboration communities (OCCs) enable geographically distributed individuals, groups, and
organizations to self-organize and contribute to community-owned artifacts. The significance of these
artifacts has been underscored by recent advancements in large language models, which leverage
community content for training sophisticated models across diverse domains, including productivity,
healthcare, and education. This study investigates star contributors—individuals making
disproportionately large contributions to focal OCC artifacts. Drawing on theories of collective action
and strategic interactions, we hypothesize a curvilinear relationship between star contributors’
contributions and both artifact quality and popularity. Utilizing data from over 21,000 open-source
software projects between 2015 and 2019, we find: (1) an inverted U-shaped relationship between the
number of star contributors and artifact quality, (2) an inverted U-shaped relationship between the
number of star contributors and artifact popularity, (3) that a higher proportion of star contributors’
contributions enhances artifact quality but not popularity, and (4) that environmental dynamism
moderates the relationship between the number of star contributors and both artifact quality and
popularity. This research advances the conceptualization of star contributors, offering a more nuanced
understanding aligned with the fluid boundaries of OCCs compared to traditional core-periphery
models. A key implication is that while star contributors positively impact artifact quality and

popularity, an excessive proportion of their contributions negatively affects artifact quality.
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1 Introduction

Online collaboration communities (OCCs) enable
geographically distributed individuals, groups, and
organizations to self-organize and openly contribute
towards a common goal, unbound by the contractual
obligations typical of traditional organizations. OCCs
are prevalent across different domains, including open-
source software development (e.g., GitHub), knowledge
management (e.g., Wikipedia), social networking (e.g.,
Reddit), and question-and-answer platforms (e.g., Stack
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Overflow, Quora), where they facilitate the creation of
shared artifacts (Forte & Lampe, 2013). OCCs also have
significant economic and generative implications, as
evidenced by Microsoft’s acquisition of GitHub for $7.5
billion in 2018 and the utilization of OCC-generated
data in the development of recent large language models
such as ChatGPT and Google Bard (Brown et al., 2020).

The sustenance and success of an OCC depend on
contributions from a diverse group of non-contracted
individual contributors (Butler, 2001; Chengalur-



Smith et al., 2010; Mindel et al., 2018). Prior research
has explored several factors that influence contribution
to OCCs, such as intrinsic and extrinsic motivation
factors (Wasko & Faraj, 2005; Wasko et al., 2009),
quality and deficiency signals emitted by the artifact
(Setia et al., 2020), and economic and health-related
shocks (Kummer et al., 2020; Malgonde et al., 2023).
A common theme in this body of work is the
classification of contributors based on access rights
(Lin & Chen, 2018; Lin & Wang, 2020; Setia et al.,
2012): core contributors, who own artifacts, hold
power over design decisions, and/or manage processes
related to the artifact, and peripheral contributors,
whose contributions are evaluated by core members
before assimilation.

However, this traditional conceptualization of core and
peripheral contributors presents four major limitations
in the context of OCCs. First, empirical evidence
suggests that contributors without core status may make
disproportionately large contributions to an artifact
(Kuk, 2006; Mindel et al., 2018). Second, OCC artifacts
are characterized by fluidity, with a constant inflow and
outflow of resources such as skills and ideas.
Consequently, a contributor’s level of contribution may
vary significantly over the artifact’s lifespan (Faraj et al.,
2016). Third, a contributor’s activity across the platform
may differ from their contribution behavior to a specific
artifact; for example, a contributor might only
participate in  discussions related to Python
programming. Finally, as contributors increase their
level of contribution, they gain influence, resulting in
the development of lateral authority (Dahlander &
O’Mahony, 2011) due to the flat hierarchical structures
prevalent in OCCs.

These limitations highlight the need for a more nuanced
understanding of contributor roles in OCCs. Rullani and
Haefliger (2013) suggest that, unlike the core-periphery
distinction based on access rights, a categorization based
on contributions provides a clearer differentiation. In
response to the limitations of the traditional core-
periphery model, we conceptualize!' star contributors as
individual contributors making a disproportionate
number of recent contributions to a focal OCC artifact,
relative to the average contributor. This approach allows
us to identify contributors whose presence can
significantly impact key outcomes in collaborative work
settings (Call et al., 2021; Taylor & Bendickson, 2021).
The concept of “stars” has gained traction within
information systems research (Bockstedt et al., 2022;
Foerderer et al., 2023), primarily in the context of non-
collaborative online communities such as innovation
contest platforms, with a focus on platform-wide
identification of star contributors.

" Our conceptualization of star contributors aligns with prior
conceptualization of core-periphery contributors, where star

Star Contributors in Online Collaboration Communities

This paper investigates three related but distinct
questions: (1) How do the number of star contributors
impact OCC artifact quality and popularity? (2) How
does the relative proportion of star contributors’
contributions impact OCC artifact quality and
popularity? (3) How does the environmental dynamism,
defined as the rate of change in the OCC content,
moderate the effect of star contributors on OCC
artifacts’ quality and popularity?

These questions are important and timely for three
reasons. First, OCCs are crucial for knowledge
management, enabling organizations to incorporate
diverse perspectives and facilitate open innovation
(Ahuja, 2000; Kankanhalli et al., 2017). However, the
fluidity of OCCs, characterized by the constant inflow
and outflow of resources such as contributors’ skills
(Faraj etal.,2011), necessitates an understanding of how
different categories of contributors, particularly star
contributors, influence artifact success. Second, prior
work has documented unequitable participation in
OCCs (Mindel et al., 2018). For example, Kuk (2006, p.
1031) observed that “much of the OSS development is
realized by a small percentage of individuals despite the
fact that there are tens of thousands of developers
available.” This highlights the need for managerial
guidance on the role of star contributors in the success
of OCC artifacts. Finally, we analyze the impact of star
contributors on two key measures of OCC artifact
success from the literature: (1) quality, which entails
making improvements to the artifact such as fixing
defects (Jarczyk et al., 2018; Setia et al., 2012), and (2)
popularity (Weng & Soh, 2023), which reflects the level
of platform users’ interest in the artifact. These measures
are important indicators of the technical, social,
sustenance, generativity, and use of OCC artifacts
(Butler, 2001; Chengalur-Smith et al., 2010; Mindel et
al., 2018; Setia et al., 2020).

OCC artifact quality refers to the evolving state of the
artifact and is measured by the number of outstanding
errors, issues, edits, and fixes to issues raised by the
community. In OCCs, community members contribute to
identifying quality-related issues and/or provide
contributions to address quality-related issues. OCC
artifact popularity is the artifact’s status within the OCC
and is measured based on the number of community
members interested in the artifact. Interest may be
measured along multiple dimensions, such as contribution,
tracking (community members track the progress and
activities related to the artifact), and marketing (the artifact
is highly discussed within the community).

To investigate the role of star contributors in OCC artifact
success, we analyzed longitudinal data from GitHub, a
popular open source software platform, spanning the
period between 2015 and 2019. Our results suggest (1) a

contributors align with core and non-star contributors align with
peripheral contributors.
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curvilinear (inverted U-shaped) relationship between the
number of star contributors and OCC artifact quality, (2) a
curvilinear (inverted U-shaped) relationship between the
number of star contributors and OCC artifact popularity,
and (3) a moderating effect by the relative proportion of star
contributors’ contributions and the level of environmental
dynamism in an OCC artifact development.

This study makes two major contributions. First, it
advances a novel conceptualization of star contributors
in OCCs that addresses the rigidity of the extant
conceptualization of core-periphery. Specifically, unlike
the core-periphery distinction using access rights, our
contributions-based categorization provides a “clear
core-periphery distinction” (Rullani & Haefliger, 2013,
p. 942) by internalizing the fluid characteristic of OCCs.
Further, whereas the core-periphery approach generally
assumes a fixed proportion (usually based on the 80-20
rule) of contribution between core and peripheral
contributors, our approach relaxes this assumption and
considers a more dynamic proportion of contribution for
star and non-star contributors. Second, while existing
literature has examined the impact of peripheral
contributors (Setia et al., 2012), emphasized the role of
core contributors (Colazo & Fang, 2010; Jiang et al.,
2019; Mogri et al., 2018), and acknowledged the general
importance of contributions to OCC sustenance (Butler,
2001; Chengalur-Smith et al., 2010; Mindel et al.,
2018), this study specifically addresses the gap in
understanding the effect of star contributors’
contributions on OCC artifact quality and popularity.
Notably, this is one of the first studies to examine the
role of star contributors in the context of OCCs, a non-
traditional organizational form.

2 Theoretical Background

Three areas of research are relevant to our study: (1)
online collaboration communities, (2) categories of
contributors to OCCs, and (3) star performers in
collaborative work.

2.1 Online Collaboration Communities

Online collaboration communities are communities of
innovation (Safadi et al., 2021) where geographically
distributed individuals (contributors) coordinate and
collaborate to create artifacts—such as products or
services—of economic and social value that are often
freely available for consumption. OCCs span multiple
domains, including open source software, question-and-
answer, and knowledge systems, among others. The
success and sustenance of OCCs are dependent on
member contributions (Butler, 2001; Chengalur-Smith
et al., 2010; Mindel et al., 2018), which can take various
forms depending on the nature, goals, and protocols of
the OCC. For instance, edits, comments, and commits to
open source software projects are considered
contributions (Daniel et al., 2013; Kummer et al., 2020;
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Malgonde et al., 2023; Setia et al., 2020; Setia et al.,
2012), whereas asking or responding to a question is
considered a contribution in question-and-answer OCCs
(Safadi et al., 2021; Xu et al., 2020). Furthermore, the
notion of artifact changes with the OCC domain (Kane
& Ransbotham, 2016; Levine & Prietula, 2014). For
example, in a question-and-answer OCC, the artifact
typically comprises the comments and answers
associated with a focal question (Safadi et al., 2021),
while in open source software, the artifact represents the
focal project along with its associated issues, code
commits, and comments (Malgonde et al., 2023).

Much of the research on OCCs has examined why
contributors contribute and the effect of their
contributions on OCC outcomes. Studies investigating
contribution behavior highlight consumption and
motivation as key factors (Kane & Ransbotham, 2016;
Lakhani & Von Hippel, 2003). Kane and Ransbotham
(2016) describe a recursive relationship where
individuals first consume the artifact, identify a gap
following consumption, and then contribute to address
that gap. Contributors may be driven by intrinsic
motivations, such as gaining a sense of community,
deriving satisfaction from their passion for the OCC, or
experiencing joy from working on its challenges
(Lakhani & Von Hippel, 2003). Extrinsic motivations
also play a role; contributors may seek favorable
outcomes such as enhanced status and reputation within
the community (Levina & Arriaga, 2014) or offline
gains in the labor market (Huang & Zhang, 2016; Xu et
al., 2020). Beyond intrinsic and extrinsic motivations,
prior work identifies external factors, such as
unemployment or health-related shocks, that affect
contribution dynamics (Kummer et al., 2020; Malgonde
et al., 2023). Research examining OCC outcomes has
considered various technical and social outcomes for
artifacts, such as take-off (Setia et al., 2020), copies for
consumption (Jiang et al., 2017), artifact quality (Setia
et al., 2012), and popularity (Weng & Soh, 2023).

Finally, prior work has recognized the influence of the
environmental dynamism of OCC artifacts on outcomes
(Jones et al., 2004; Levina & Arriaga, 2014).
Environmental dynamism refers to the extent to which
an artifact’s development necessitates rapid and
continuous updates. OCC artifacts exhibiting high
environmental dynamism require consistent and rapid
contributions to meet the need for frequent updates
(Baskerville et al., 2003). For example, operating
systems and web browsers’ need for software patches on
security vulnerabilities, and fast-paced policy-related
discussions on the use of generative technology on Stack
Overflow (Overflow, 2023). Conversely, OCC artifacts
with low environmental dynamism are characterized by
slower evolution, prioritizing organic stability over
rapid changes. Examples include embedded systems
software (e.g., in devices and appliances) and firmware.
Table 1 summarizes key studies from prior work.
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Table 1. Related Work

Paper | OCC Key variables Contributors’ Star contributor Key findings
context classification conceptualization
Lin Online o Article quality e Core member e Based on o Contributions by core
and encyclopedia | o Number of core (cumulative contribution participants positively impact
Wang | (Wikipedia) members edits above 80% frequency article quality.
(2020) e Content revised across platform) (cumulative
by occasional o Occasional edits above 80%
participants participants across platform)
o Static
classification
Safadi | Technical e Valued e Embedded e Based on ¢ High socially embedded and
et al. question and knowledge contributors location within epistemically marginal
(2021) | Answer contributions (central to the community participants contribute valued
platform e Social community network knowledge.
(Stack embeddedness network) e Dynamic e Among epistemically marginal
Overflow) o Epistemic e Marginal classification participants, socially embedded
marginality contributors participants provide highly
(peripheral in the valued knowledge
community contributions.
network)
Setia Open source | e Open source e Core developers | e Based on e Peripheral contributors
et al. software software product (retain control control and positively contribute to
(2012) | (Source quality and and authority authority over products’ quality and diffusion,
Forge) product diffusion over key aspects key aspects of especially in OSS products that
o Participation of of development) development are at the mature stage.
peripheral e Peripheral e Dynamic
developers and developers classification
open source (volunteer
software product contributors
maturity without
hierarchical or
contractual
controls)
This Open source | e Quality and e Star contributors | e Based on e Inverted U-shaped relationship
paper | software popularity of (disproportionate disproportionate between the number of star
(GitHub) OCC artifact contributions to contribution contributors and OCC artifact’s
e Number of star an OCC artifact) frequency quality and popularity
contributors e Recency of ¢ Relative proportion of star
e Relative contributions contributors’ contributions
proportion of star e Dynamic moderate the relationship
contributions classification between the number of star
e OCC artifact’s contributors and the artifact’s
environmental quality and popularity
dynamism
Note: This table illustrates the key differences of this study in comparison to selected studies from the literature and does not provide an
exhaustive list of related work.

2.2 Categories of Contributors

Research on OCCs has identified core and periphery

contributors as the broad set of contributors based on
access rights (Rullani & Haefliger, 2013). First, core
contributors possess the authority to edit, maintain,
design, lead, and evaluate others’ contributions to the
OCC artifact. Examples include project owners in open
source projects, Wikipedia page administrators, Listserv
owners, and administrators in Usenet. Related
conceptualizations of core contributors have considered
their position in the OCC network (Daniel et al., 2013;

Safadi et al., 2021) and their level of contribution (Daniel
et al.,, 2013; Lin & Wang, 2020; Setia et al., 2012).
Second, peripheral contributors make limited
contributions, typically localized in scope, size, and
quantity. For example, Setia et al. (2012) operationalized
peripheral contributors as those contributing “between
0% to 12% percent of the total code contributions”
(p.149). Dahlander and O’Mahony (2011) suggested a
dynamic transition, where increased contributions can
elevate a peripheral contributor to the core, granting them
greater influence over the OCC artifact.
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In the context of open source software (empirical
context for our study), the distinction between core and
peripheral contributors is particularly evident in code
and communication channels. Core contributors have
direct access to modify the project’s codebase, while
peripheral contributors’ code changes require core
member approval. However, communication channels,
such as comments and issue reporting, are generally
more accessible. Therefore, “a joint analysis of [code
and communication] channels can thus lead to the
identification of a clear core-periphery distinction”
(Rullani & Haefliger, 2013, p. 942).

2.3 Conceptualizations of Star
Contributors

Star contributors have been conceptualized in
traditional organizational settings, such as teams, and
platform-based settings, such as contests. In traditional
organizational studies, conceptualizations of stars
have focused on high-performing, visible team
members with status and significant social capital (Call
et al, 2021), effective boundary spanners who
assimilate tacit knowledge (Hess & Rothaermel,
2011), or highly productive and visible individuals
(Groysberg et al, 2008, 2011). However, these
conceptualizations have limited applicability to OCC
context due to their non-collaborative contexts.

In platform-based settings, stars are often identified as
top-ranked contestants (Bockstedt et al., 2022; Zhang
et al., 2019) or contributors with significantly higher
demand than their peers (Foerderer et al., 2023).
However, these conceptualizations have limited
applicability to OCCs because they primarily (1) focus
on non-collaborative contexts (i.e., contributors
compete rather than collaborate), and (2) take a
platform-wide (i.e., use global ranking) notion of stars.

Studies related to the OCC context have also
considered the notion of star contributors. For
example, Lin and Wang (2020) conceptualized core
members as those who are “frequently involved in the
editing of the article” (p. 329) and occasional members
as those who “occasionally participate in editing work™
(p.- 329). However, this frequency-based approach
(e.g., classifying contributors accounting for 80% of
cumulative contributions as stars) has limitations.
Consider three contributors, A, B, and C, with the
following contribution patterns over 10 periods: User
A contributes regularly (e.g., 20 edits weekly for the
first five weeks), totaling 100 contributions; User B
contributes intermittently (e.g., 100 contributions in
week 1, 150 in week 2, and none thereafter), totaling
250 contributions; and User C contributes consistently
(e.g., 8 edits weekly), totaling 80 contributions. The
respective contribution shares are 23.2%, 58.1%, and
18.6%. Applying the 80% threshold as used in Lin and
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Wang (2020), both Users A and B are classified as core
contributors. This approach, however, presents two
issues: (1) it fails to distinguish between Users A and
C, despite their comparable contributions, and (2) it
disregards the recency of contributions, overlooking
User C’s consistent engagement over all periods,
unlike User A’s limited, early contributions. In
dynamic OCCs that evolve over extended periods, a
static, threshold-based approach can misidentify star
contributors.

Beyond comparability and recency issues, the 80%
threshold implies: (1) the presence of core and
occasional contributors in every project, as
contributions are always ranked, with the top 80%
deemed core, and (2) a constant 80% contribution
share for core contributors. Our conceptualization
departs from these along two dimensions: (1) It
accounts for scenarios with no star contributors (i.e.,
when contributions are comparable), and (2) it
recognizes varying star contribution proportions. For
example, Contributors A, B, and C with 6, 2, and 2
contributions, respectively, are classified by Lin and
Wang (2020) as having two core contributors (A and
either B or C) to meet the 80% threshold. Our approach
identifies User A as the sole star contributor,
accounting for 60% of contributions.

Table 2 summarizes prior conceptualizations of star
contributors in the OCC context. Our contribution-
based conceptualization aims to address these
limitations by (1) moving beyond the rigid core-
periphery classification, (2) accounting for the recency
of contributions, and (3) accounting for the
comparability of contributions.

2.4 Performance Outcomes Associated
With Star Performers in Collaborative
Work

Research on star performers has yielded mixed results,
demonstrating both positive (Grigoriou & Rothaermel,
2014; Rothaermel & Hess, 2007) and negative
(Groysberg et al., 2008) impacts. While star performers
can enhance innovation output and facilitate knowledge
transfer among peers (Burke et al., 2007; Grigoriou &
Rothaermel, 2014; Rothaermel & Hess, 2007), they
have also been linked to decreased firm value and
diminished team effectiveness (Groysberg et al., 2008;
Groysberg et al., 2011; Lam et al., 2011). More recent
studies have explored nonlinear effects, revealing
nuanced impacts on team and peer performance (Call et
al., 2021; Taylor & Bendickson, 2021). However, this
body of research primarily focuses on traditional
organizational settings, which differ significantly from
open collaborative communities (OCCs) where formal
employment contracts are rare.
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Table 2. Conceptualizations of Star Contributors in Online Collaboration Communities

Label Conceptual definition

OCC context and example

Related papers

Core versus

members of the artifact.

Core members are contributors | Context: open source software, question
periphery who are officially listed as core | and answer

Example: Creator of an open source
software project

Dahlander & Frederiksen
(2012); Setia et al. (2012);
Rullani and Haefliger
(2013);

Embedded Using a network of
versus contributors, core embedded
peripheral members are central nodes.

Context: open source software, online
encyclopedia

Example: A node with a high centrality
score in a network of contributors across

Ahuja (2000); Wasko &
Faraj (2005); Grewal et al.
(20006); Feller et al. (2008);
Singh et al. (2011); Peng

artifact, of contributors in a period.
community, or
platform level)

OSS projects (2019); Safadi et al. (2021)
Star versus Disproportionately large Context: online encyclopedia Lin & Wang (2020)
non-star (at the | contributions across all Example: Contributors who account for
platform level) | contributors. first 80% of the cumulative contributions

after sorting contributors in a descending

order
Star versus Recency and disproportionality | Context: open source software This paper

non-star (at the | of contributions across the set Example: Contributors who account for a
disproportionate (e.g., more than 3 times
the average contributor) size of
contributions in a period.

Note: This table classifies prior conceptualizations of star contributors in OCC contexts. Also, this table provides a conceptualization of related
concepts such as core contributors and embedded contributors that refers to central contributors (e.g., decisions related to project direction) to
the focal OCC artifact. Studies in contexts characterized by non-collaborative artifact development, organizational setting, and/or adopting a
platform-level conceptualization of stars are not considered due to their misalignment with the OCC context.

In their review of the literature on star performers, Asgari
et al. (2021) suggested that many fields have a vested
stake in the study of star performers, as they may have
certain strategic implications and may play a significant
role in value creation under a range of contexts and
environments. Within information systems, recent
studies have examined star performers on online
platforms, primarily in non-collaborative, competitive
environments (e.g., Bockstedt et al., 2022; Foerderer et
al., 2023; Zhang et al., 2019). These platforms, such as
online contests and streaming services, feature star
performers competing against other users, unlike OCCs,
where collaboration is central to artifact creation.
Research in these competitive contexts suggests that star
performer presence can negatively affect participation
(Bockstedt et al., 2022; Zhang et al., 2019) and that their
departure can hinder overall production (Foerderer et al.,
2023). However, these findings may not translate to
collaborative  online environments, where star
performers contribute alongside others.

Two key points emerge from this review of star performer
literature. First, most of the research is rooted in
traditional offline organizational settings, underscoring
the need to explore diverse contexts such as OCCs.
Second, while studies in platform settings exist, they have
been confined to non-collaborative settings with
platform-wide star definitions and neglect the quality and
popularity of collaboratively produced content.

2.5 Research Gap

This research addresses two significant gaps in the
existing literature. First, Faraj et al. (2015, p. 395)
highlight the discrepancy between formal roles and
actual contribution, noting that “even when formal roles
do exist in online communities, such as listserv owner
and administrator, they are often not the ones who make
the most significant contributions (Butler et al. 2008).”
This observation underscores the dynamic nature of
contributor behavior, which can fluctuate based on
artifact specifics, external factors, motivations, and
time. Consequently, rigid core-periphery classifications
fail to capture the fluid boundaries inherent in OCC
boundaries (Faraj & Sproull, 2000). To address this, our
research advances a contribution-based
conceptualization that identifies contributors providing
recent and disproportionately high numbers of
contributions. While prior conceptualizations have
typically assumed a fixed ratio of contributions (e.g., 80-
20 rule) in their core-periphery classifications, our
approach assumes and models for variability in the ratio
of contributions while also considering the recency of
contributions. Moreover, our conceptualization also
allowed us to examine how the variability in the
proportion of contribution across the core and periphery
can affect OCC outcomes, which has not been explored
in the literature.
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Second, while the impact of contributors on OCC
quality is recognized (Setia et al., 2012), the effect of
disproportionate contributors (stars) on artifact quality
and popularity remains underexplored. This gap
necessitates longitudinal data to empirically examine
these effects.

This paper further distinguishes itself from prior work in
two key aspects. First, studies within the open-source
software context often use stars to denote the GitHub
feature, indicating user interest in a project. For instance,
Jarczyk et al. (2018) consider stars to be the number of
GitHub platform users that are watching (similar to
bookmarking) the focal OSS project, whereas Medappa
and Srivastava’s (2019) use of stars “indicates
approximately the number of people who are interested
in and show support for that project” (p. 774). In
contrast, our study defines stars as individual
contributors who provide a disproportionate share of
contributions to a specific OSS project. Second, unlike
research on star contributors in traditional settings, this
paper investigates their role in a collaborative context,
adopts a content-level perspective of stars, and focuses
on their impact on both the quality and popularity of
collaboratively produced artifacts.

3 A Theoretical Framework of Star
Contributors

This section outlines the theoretical framework for
understanding star contributors in open collaborative
communities (OCCs). In this section, we discuss a
theoretical framework for star contributors. In Section
3.1, we conceptualize and discuss star contributors
across the artifact, community, and collaboration
platform. In Section 3.2, we employ the concept of
unequitable contributions and the theory of collective
action to explore how star contributors influence other
community members. Section 3.3 discusses the impact
of environmental dynamism on the influence of star
contributors on OCC artifacts. Finally, Section 3.3
provides our study hypotheses, derived from the
theoretical framework.

3.1 Star Contributors and Open
Collaboration Communities

We conceptualize star contributors as individuals
providing recent and disproportionate numbers of
contributions to a focal OCC artifact. This
conceptualization can be extended to the collaboration
platform, community, or individual artifact, depending
on the OCC’s context. At the platform level, star
contributors provide a disproportionate number of
contributions across the entire platform. For example, a
star contributor on Stack Overflow might provide a
high number of questions, answers, edits, and votes
across diverse topics (Xu et al., 2020). Within a
collaboration community, star contributors provide a
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disproportionate number of contributions to a specific
community. For instance, a star contributor on Reddit’s
personal  finance subreddit might contribute
significantly more posts, comments, and votes than
other members (Burtch et al., 2022). Finally, at the
artifact level, a contributor might provide a
disproportionate number of edits to a specific Wikipedia
article but have minimal contributions to other articles,
making them a star contributor for that article but not the
platform as a whole (Lin & Wang, 2020).

This multilevel conceptualization of star contributors
has two important implications. First, platform-level star
contributors primarily concern platform owners, with
limited direct impact on individual contributors. For
example, while a list of top GitHub contributors might
be interesting, it’s unlikely to significantly affect
contributions to individual projects (Wasko & Faraj,
2005). Similarly, identifying top contributors to the
Python programming language community may have
limited influence on individual contributions (Wasko et
al., 2009). However, at the artifact level, star
contributors significantly influence the artifact’s
outcomes and signal its dynamics to the broader
platform community. Second, unlike our contribution-
based conceptualization, which applies across artifact,
community, and platform levels, the traditional core-
periphery model (Setia et al., 2012) is limited to the
artifact level. This broader applicability enhances the
generalizability of our approach within OCC contexts.

Beyond its multilevel (platform, community, and
artifact) applicability, our conceptualization of stars
introduces the notion of variability in the level of
contributions that make a star because the
identification of stars should be dependent on both the
OCC artifact and time. The level of contribution it
takes a contributor to be identified as a star in one OCC
artifact during a particular period may not be the same
for another OCC artifact because of the differing
nature of the OCC artifacts. The notion of variability
in the proportion of the overall OCC contributions by
stars further provides insights into a context
characterized by contributor and contribution fluidity.
Such fluidity may result in periods in the OCC artifact
lifecycle that may have no stars because contributions
are comparable among contributors.

Star contributors are driven to maintain high
performance levels by a combination of extrinsic and
intrinsic motivations. Extrinsically, they seek to stand
out, gain attention, increase their visibility, and acquire
other positive externalities (Huang & Zhang, 2016; Xu
et al., 2020). Intrinsically, they derive benefits such as
happiness, satisfaction, and a sense of community. In
OCC artifact development, star contributors are
recognized for their contributions and may gain
increased authority, privileges, or even governing
positions (Daniel et al., 2013).



3.2 Unequitable Contributions to Open
Collaboration Communities

Our conceptualization of star contributors is rooted in the
phenomenon of unequitable contributions observed in
OCCs, where a small percentage of contributors produce
a disproportionately large share of the output (Kuk, 2006;
Mindel et al., 2018). Unequitable contributions have both
positive and negative implications. Positively, they can
lead to better coordination, tighter coupling, and
improved skill-task fit, as specific contributors are often
better suited to specific contribution needs (Hann et al.,
2013). Negatively, they can introduce vulnerability due to
the inherent fluidity of OCCs, characterized by
unrestricted resource inflow and outflow (Faraj et al.,
2011), and facilitate free-riding behavior, where
individuals benefit without contributing.

The theory of collective action (Oliver & Marwell, 1988)
posits that unequitable contributions by a small,
heterogeneous group can generate the critical mass
necessary for widespread collective action within OCCs.
For instance, a small group’s initial efforts can attract
broader community participation. However, empirical
evidence from OCCs demonstrates a tendency for
contributions to concentrate among a subset of members
(Kuk, 2006; Von Krogh et al., 2012). The concept of
strategic interaction suggests that individuals make
strategic decisions about their participation (Oliver &
Marwell, 1988). Specifically, individuals are drawn to
resourceful, successful, popular communities and
individuals that align with their objectives, while avoiding
participation when they perceive a risk of failure.
Consequently, “strategic interaction has not only resulted
in participation inequality but also concentrated OSS
participation on the types of epistemic interactions that
matter most to OSS development” (Kuk, 2006, p. 1033).

In Section 3.4, we examine unequitable contributions and
draw on the theory of collective action to identify
underlying theoretical mechanisms that can explain the
impact of star contributors on OCC artifact quality and

popularity.

Proportion of
contributions by
star contributors

Number of star
contributors associated [=:=:27_
with OCC artifact

Note: Dashed lines indicate nonlinear relationships.
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3.3 Star Contributors and Environmental
Dynamism

The artifact’s environment is a significant contextual
factor that can influence the performance of star
contributors (Aguinis & O’Boyle, 2014). OCC artifacts
typically operate within either relatively static or dynamic
environments (Baskerville et al, 2003). Static
environments are characterized by predictable resources,
tasks, and a plan-driven development approach (Harris et
al., 2009). Examples include incremental feature additions
to existing artifacts or applications where rapid market
entry is not critical. Conversely, dynamic environments
are marked by uncertainty regarding resources and tasks,
necessitating flexible approaches that adapt to changing
conditions (e.g., speed to market, critical updates) and user
feedback (Baskerville et al., 2003).

In dynamic environments, adaptive and iterative
approaches, such as agile methodologies, are favored for
their ability to incorporate user feedback and tame
uncertainty (Harris et al., 2009). These approaches
emphasize collaboration and require specific resources,
such as team members with domain and application
expertise. The primary goal is to facilitate timely responses
to environmental dynamism (Maruping et al., 2009).

Prior research suggests that star performers are particularly
valuable in dynamic environments (Asgari et al., 2021;
Campbell, 2014). In peer production models, especially
OCC software development, we argue that the
disproportionate size and recency of star contributors’
contributions are crucial for navigating increasing
dynamism. Specifically, a high proportion of recent
contributions equips star contributors to identify critical
challenges, propose effective solutions, rapidly
incorporate user feedback, and communicate effectively
with the community (Cram et al., 2016).

3.4 Hypotheses

Figure 1 illustrates our research model.

OCC artifact’'s
environmental
dynamism

_.--»  OCC artifact quality

“=-* OCC artifact popularity

Figure 1. Research Model
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3.4.1 Effect of Star Contributors on Artifact
Quality

We hypothesize that an increase in the number of star
contributors increases the quality of focal OCC artifacts
up to a certain threshold, beyond which an increase in the
number of star contributors decreases the quality of focal
OCC artifacts. While contributions from star contributors
address quality-related issues (Setia et al., 2012; Von
Krogh et al., 2012), a scarcity of such contributors can
impede OCC quality. This is due to factors such as
concentrated workload leading to cognitive strain, limited
resource availability, the potential for select contributors
to dominate discussions, and constraints on the
exploration of diverse design solutions (Jones et al., 2004;
Kuk, 2006). Conversely, an excessive number of star
contributors may also negatively affect OCC quality. This
can result from heightened coordination costs, diminished
group cohesiveness, and increased inefficiencies
stemming from overlapping or redundant efforts
(Overbeck et al., 2005). Furthermore, as contributions
increase, so does the contributor’s influence over the
OCC artifact (Dahlander & O’Mahony, 2011).
Consequently, an overabundance of star contributors can
escalate tensions regarding the artifact’s design and
overall direction (Faraj et al., 2011), fostering dysfunction
and stagnation, which ultimately compromises artifact
quality. Hence, we hypothesize:

H1: The number of star contributors contributing to an
online open collaboration community artifact is
curvilinearly related to the artifact’s quality, such
that a moderate number of star contributors is
associated with the highest quality (inverted U-
shaped relationship).

3.4.2 Effect of Star Contributors on Artifact
Popularity

The popularity of an OCC artifact is influenced by
community interest, which is driven by motivations such
as learning, utilizing the artifact’s solutions (e.g.,
addressing a novel problem), and contributing to its
development. While static artifact properties such as
topic, programming language, and administrator
influence popularity, we hypothesize that the number of
star contributors also plays a significant role. Specifically,
we propose an inverted U-shaped relationship between
the number of star contributors and OCC artifact
popularity: Increasing the number of star contributors
enhances popularity up to a critical threshold, beyond
which further increases lead to a decline.

Initially, an increasing number of star contributors
signals the presence of resourceful individuals. Drawing
upon the theory of strategic interactions (Oliver &
Marwell, 1988), the concentration of resourceful
individuals attracts community members seeking
connections. Consequently, the artifact’s popularity, as
measured by user interest, increases. Furthermore,
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platform mechanisms reinforce this trend. In
collaborative settings, platform-level star contributors
exert influence and attract attention to OCC artifacts
(Blincoe et al., 2016; Lee et al., 2013; Weng & Soh,
2023). When star contributors possess significant
followings, their contributions trigger notifications,
driving followers to explore the artifact and boosting its
popularity (Blincoe et al., 2016; Lee et al., 2013; Weng
& Soh, 2023). Even when star contributors lack large
followings, their activity signals the artifact’s active
status to platform users. OCC platforms often highlight
recently active or highly contributed artifacts, thereby
increasing visibility. Thus, an increase in star
contributors leads to increased artifact popularity.

However, based on the theory of collective action
(Oliver & Marwell, 1988) and strategic interactions
(Kuk, 2006), users strategically select OCC artifacts to
connect with resourceful individuals. As the number of
star contributors surpasses a critical threshold, users face
challenges in identifying contributors aligned with their
participation goals. Additionally, reciprocity, a crucial
mechanism for epistemic interactions in OCC artifacts
(Ye et al., 2018), is affected. While an increasing
number of star contributors can facilitate reciprocity by
distributing the interaction load, an excessive number
diminishes the bandwidth for meaningful reciprocal
discussions. Hence, we hypothesize:

H2: The number of star contributors contributing to an
online open collaboration community artifact is
curvilinearly related to the artifact’s popularity,
such that a moderate number of star contributors is
associated with the highest increase in popularity
(inverted U-shaped relationship).

3.4.3 Moderating Role of the Proportion of
Star Contributors’ Contributions on
Artifact Quality

We propose that the curvilinear relationship between the
number of star contributors and OCC artifact quality is
moderated by the relative proportion of star contributors’
contributions. ~ Specifically, we identify distinct
mechanisms that explain both the increase and decrease
in artifact quality associated with varying proportions of
star contributor involvement.

We identify four mechanisms that explain the increase in
artifact quality. First, OCCs are characterized by flat
organizational structures, where coordination is
paramount (Faraj et al., 2015). An increased proportion of
star contributors’ contributions reduces coordination
costs (Lerner & Tirole, 2005). These costs, encompassing
resource allocation for minimizing redundancy, ensuring
comprehensive problem coverage, and aligning disparate
contributions, directly impact available resources, thereby
positively influencing OCC quality. Second, a
disproportionate number of contributions from star
contributors reduces the resource burden for community



reciprocation and engagement. Star contributors, having
internalized OCC norms, require less engagement,
freeing resources for artifact improvement. Third,
equitability in OCC highlights the importance of aligning
contributors’ skills to the task at hand (Kuk, 2006; Mindel
et al., 2018). Increased star contributor involvement
enhances this alignment, leading to improved task
execution and artifact quality. Finally, star contributors
exert a “peer productivity effect,” motivating non-star
contributors to increase their productivity (Falk & Ichino,
2006; Ichniowski & Preston, 2014). Mas and Moretti
(2009) suggest that the increase in productivity by low-
performing workers is driven by the need to minimize
productivity differentials, hence leading to an increase in
overall team productivity with a positive effect on
outcomes. In the OCC context, non-star contributors
internalize star contributors’ higher proportion of total
contributions to improve their own contributions and
minimize the productivity differential. The increased
contribution will lead to more issues being resolved and
defects fixed in the OCC artifact, and by extension, will
increase the quality of the OCC artifact.

A concentration of star contributors’ contributions can
negatively impact OCC artifact quality through four key
mechanisms. First, it can increase the artifact’s
vulnerability to contributor attrition (Mindel et al., 2018).
Attrition, in this context, refers to contributors diverting
their efforts, driven by personal motivations or external
factors, away from the focal artifact to other community
projects or entirely outside the community. Consequently,
fluctuations in star contributors’ contributions can
significantly destabilize the artifact. Second, an excessive
concentration of contributions can  overwhelm
contributors and strain available resources, reducing the
time allocated for thorough design exploration (Brooks,
1987). This time constraint can lead to an increase in
errors associated with proposed solutions. Third, the
resulting increase in errors can create a critical dilemma:
prioritizing progress by limiting features or addressing
existing errors. Both choices negatively affect artifact
quality. Finally, a disproportionate reliance on star
contributors can generate skill gaps, where the available
expertise does not align with the necessary tasks. This
misalignment can lead to suboptimal solutions, ultimately
diminishing the overall quality of the OCC artifact.

In summary, these arguments suggest that the effect of
star contributors on OCC artifact quality will vary with
the relative proportion of star contributors’ contributions
to the artifact. Hence, we hypothesize:

H3: The relative proportion of the star contributors’
contributions moderates the relationship between
the number of star contributors and artifact quality,
such that an increase in the relative proportion of
their contributions strengthens the effect on artifact
quality (i.e., the curve is more pronounced).
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3.4.4 Moderating Role of the Proportion of
Star Contributors’ Contributions on
Artifact Popularity

We propose that the curvilinear relationship between the
number of star contributors and OCC artifact popularity
is moderated by the relative proportion of star
contributors’ contributions. Drawing upon the theory of
collective action (Oliver & Marwell, 1988) and strategic
interactions (Kuk, 2006), users strategically associate
with resourceful individuals to achieve participation
objectives, such as learning artifact norms before
contributing, and to engage with successful artifacts
(Kuk, 2006; Oliver & Marwell, 1988). As the proportion
of star contributors’ contributions increases, community
members can more readily identify and connect with
these resourceful individuals and the associated OCC
artifact, due to its perceived likelihood of success. In
practice, a disproportionate increase in individual
contributions attracts community attention (Yang & Shi,
2011), often operationalized through follower counts (Wu
et al, 2009). This heightened visibility fosters a
perception of increased artifact success, further drawing
community interest. For example, in open source
software OSS contexts, star contributors’ contributions
positively influence their followers’ engagement (Lee et
al., 2013; Moqri et al., 2018).

However, a disproportionate proportion of contributions
attributed to star contributors can also negatively impact
OCC artifact popularity. Specifically, it can signal
vulnerabilities related to contributor attrition, resource
strain, and the homogeneity of contributions.
Consequently, even when star contributors initially attract
attention, potential contributors may refrain from
participation due to an “anticipatory fear of failure in
collective action” (Kuk, 2006, p. 1032). In summary,
these arguments suggest that the effect of star contributors
on OCC artifact popularity is contingent on the relative
proportion of their contributions. Hence, we hypothesize:

H4: The relative proportion of star contributors’
contributions moderates the relationship between
the number of star contributors and artifact
popularity, such that an increase in the relative
proportion of their contributions strengthens the
effect on artifact popularity (i.e., the curve is more
pronounced).

3.4.5 Moderating Role of OCC Artifact’s
Environmental Dynamism on Artifact

Quality

We propose that the level of environmental dynamism
moderates the curvilinear relationship between the
number of star contributors and artifact quality.
Specifically, we identify distinct mechanisms that explain
both the increase and decrease in artifact quality under
varying levels of environmental dynamism.
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We identify three mechanisms to explain the increase in
artifact quality. First, star contributors, embedded in
epistemic exchanges, possess a deep understanding of the
rules, norms, and social structures of the OCC (Wasko &
Faraj, 2005; Wasko et al., 2009). Consequently, an
increase in star contributors provides readily deployable
resources to address the demands of environmental
dynamism and enhance artifact quality. Second, their
embeddedness affords star contributors superior insight
into OCC norms, problems, design solutions, and
problem-solution matching. This expertise minimizes the
time required for efficient task execution (Brooks, 1987),
leading to positive downstream effects on artifact quality.
Finally, given their familiarity with contribution norms,
an increase in star contributors offers resources that can
be deployed with minimal coordination costs (Faraj &
Sproull, 2000), such as integrating contributions,
reducing redundancy, and facilitating key decision-
making. In environments characterized by high
dynamism, these readily available, proven solutions
significantly enhance artifact quality.

Conversely, under conditions of high environmental
dynamism, an excessive number of star contributors can
diminish ~artifact quality through two primary
mechanisms. First, while star contributors internalize
OCC rules and norms, exceeding a critical threshold
increases coordination costs, yielding diminishing returns
in terms of artifact quality (Faraj & Sproull, 2000).
Second, high environmental dynamism necessitates rapid
decision-making and direction. OCC research indicates
that contributors ascend to leadership roles based on their
contributions, influencing the design and direction of
OCCs (Dahlander & O’Mahony, 2011). However, an
overabundance of star contributors can lead to competing
directions within a flat organizational structure, hindering
swift decision-making and negatively impacting artifact
quality. Hence, we hypothesize that:

HS5: The level of OCC artifact environmental dynamism
moderates the relationship between the number of
star contributors and artifact quality, such that an
increase in the OCC artifact environmental
dynamism strengthens the effect on artifact quality
(i.e., the curve is more pronounced).

3.4.6 Moderating Role of OCC Artifact
Environmental Dynamism on Artifact
Popularity

We propose that the level of environmental dynamism
moderates the curvilinear relationship between the
number of star contributors and artifact popularity.
Specifically, we identify distinct mechanisms that explain
both the increase and decrease in artifact popularity under
varying levels of environmental dynamism.

We identify three mechanisms to explain the increase in
artifact quality. First, heightened environmental
dynamism often necessitates rapid responses.
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Consequently, contributions lead to shorter outcome
cycles. With an increase in the number of star
contributors, community members perceive a greater
likelihood of artifact success (Oliver & Marwell, 1988),
thereby increasing artifact popularity. Second, in
environments characterized by high dynamism, an
increased number of star contributors fosters positive
community synergy, attracting members for socialization
(Malgonde et al., 2023) and subsequently enhancing
artifact popularity. Finally, OCC platforms often promote
artifacts based on contribution metrics. Frequent actions,
such as votes in Stack Overflow discussions or open
source software releases, in response to environmental
dynamism and an increased number of star contributors,
may elevate these metrics, thereby attracting OCC
members outside the immediate contributor network.

Conversely, under conditions of high environmental
dynamism, an excessive number of star contributors can
diminish artifact popularity through two primary
mechanisms. First, increased coordination challenges and
competing directions can negatively impact perceived
artifact success. Consequently, community members are
less likely to associate with artifacts deemed likely to fail
(Kuk, 2006). Second, high environmental dynamism and
an increased number of star contributors can overwhelm
community members with cognitive load, such as
tracking design changes, issues, and proposed solutions.
This perceived volatility and rapid pace may misalign
with members’ participation objectives, such as learning
or contributing, thereby reducing artifact popularity.
Hence, we hypothesize:

He6: The level of OCC artifact environmental dynamism
for an artifact moderates the relationship between
the number of star contributors and artifact
popularity, such that an increase in the OCC
artifact environmental dynamism strengthens the
effect on artifact popularity (i.e., the curve is more

pronounced).
4 Method
4.1 Data

Our empirical setting for online collaborative
communities 1is open source software (OSS)
development, where each OSS project serves as an
artifact. We utilized data from GitHub, a prominent
OSS platform facilitating contributions from
geographically distributed IT professionals. Appendix
Figure Al details our sample selection procedure,
which drew from data spanning 2015 to 2019. Initially,
we identified over 1.5 million projects featuring
releases, defined as packaged, production-ready code
versions. For each project, we programmatically
extracted profile information, including owner type,
project creation timestamp, popularity metrics, and the
number of forks (copies) created on the platform.



Projects were excluded from the sample if they: (1)
were deleted from GitHub, (2) exhibited inconsistent
panel data (i.e., missing data creating temporal gaps),
or (3) involved only a single contributor. To ensure
sufficient data for empirical analysis and following
prior research (Safadi et al., 2021; Zaheer et al., 1999),
we aggregated project-level data annually. Our final
sample comprised 21,456 OSS projects, with an
average of 17.7 unique contributors per project.

4.2 Variables

4.2.1 Dependent Variables

This study had two primary dependent variables: project
quality and project popularity. Project quality was
operationalized as the number of closed issues. Issues, in
this context, represent formal requests submitted by OSS
community members, enabling project teams to
systematically address and resolve quality-related
concerns. Project popularity was measured by the number
of bookmarks for the focal project. GitHub’s bookmarking
feature allows platform users to track projects of interest
and receive updates on their development.

4.2.2 Independent Variables

This study employed three key independent variables: the
number of star contributors (NoOfStars), the proportion
of contributions by star contributors (PropOfStarCont),
and project environmental dynamism (ProjDyn).

First, the number of star contributors (NoOfStars) within
an OSS project during a given year was considered.
Extant research has identified star contributors as those
whose contributions exceed the mean (Baba et al., 2009)
or are 3 standard deviations above the mean (Hess &
Rothaermel, 2011; Rothaermel & Hess, 2007). Following
Rothaermel and Hess (2007) and Hess and Rothaermel
(2011), we identified star contributors as individuals
whose contributions are 3 standard deviations? above the
mean for a specific OSS project in a given year.
Consistent with Daniel et al. (2013), we adopted a broad
definition of OSS project contributions, encompassing
both code and non-code activities (e.g., commits,
comments, issue  creation/updates, and  wiki
creation/updates). For each project-year dyad, we
calculated the count of star contributors (NoOfStars).

Second, the proportion of contributions by star
contributors (PropOfStarCont) was operationalized as
the ratio of (1) the total contributions made by star
contributors to a focal project in a given year to (2) the
total contributions made to that focal project in that year.
For instance, if star contributors contributed 64 out of 100
total contributions to a project in a given year, the
PropOfStarCont would be 0.64.

2 Appendix Table Al presents robustness tests using one standard
deviation, demonstrating qualitatively consistent results.
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Finally, project environmental dynamism (ProjDyn)
was operationalized as the average annual software
release rate. A higher release rate indicates a project
team’s adaptive response to a dynamic environment,
reflecting rapid project changes and enhancements. We
used the average release rate as a reflective measure of
project dynamism.

4.2.3 Control Variables

To account for potential confounding factors, we included
several control variables. These include: the number of
non-star contributors (NoOfNonStars), project tenure
(ProjTenure), owner tenure on the OSS platform
(OwnTenure), owner type (OwnType, indicating
individual or organizational ownership), average annual
contribution to the project (AveYrCont), and total annual
contributions to the project (7ot YrCont). Additionally, we
controlled for the number of issues opened in the project
during the year (IssOpen), as this may have influenced the
number of issues that were closed. Table 3 outlines the
measurement of these variables, and Table 4 presents
descriptive statistics for the key variables in this study.

4.3 Econometric Considerations

We employed hierarchical linear modeling (HLM;
Raudenbush & Bryk, 2002) to analyze our data for two
primary reasons: first, our data exhibited a panel structure
with yearly observations nested within OSS projects;
second, this nested structure violates the independence
assumption inherent in standard regression methods.
HLM effectively addresses the statistical limitations of
standard regression when analyzing nested data
(Hofmann, 1997). Moreover, given our expectation that
period-level effects would vary across OSS projects,
HLM allowed us to account for both period-varying and
project-varying factors in our hypothesis tests.

Following an incremental modeling approach (Kreft et
al., 1998), we proceeded through several stages.
Initially, we specified a null model (Model 1 in Tables
4 and 5), devoid of period- or project-level predictors.
This model, analogous to a one-way ANOVA with
random effects, enabled us to assess significant variance
in our dependent variables at each level (period and
project), validating the necessity of a multilevel analysis
(Kreft et al., 1998). Subsequently, we introduced control
variables (Model 2 in Tables 4 and 5), followed by our
key predictors (Models 3 and 4 in Tables 4 and 5) to
examine the relationship between star contributors and
the dependent variables. We then included the period-
level moderator (Model 5 in Tables 4 and 5) to test
hypotheses regarding the relative proportion of stars’
contributions. Finally, we added the project-level
moderator (Model 6 in Tables 4 and 5) to assess the
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moderating effect of environmental dynamism. This
incremental approach allowed us to observe the variance
changes in outcomes across the models. We utilized
random effects modeling to control for unobserved
heterogeneity and account for interproject variation.

We performed several supporting tests to ensure the
robustness of our findings. First, the distributional
assumptions of HLM were met. Second, the Kolmogorov-
Smirnov test confirmed the normality of residuals at the
0.1% significance level for all models. We observed low
multicollinearity, with variance inflation factor values
below 10. Third, the Breusch-Pagan test (Raudenbush &
Bryk, 2002) indicated no evidence of heteroskedasticity at
the 0.1% significance level. Fourth, we group-mean
centered period-level variables and grand-mean centered
project-level ~ variables to mitigate non-essential
multicollinearity and enhance result robustness. Finally,
we estimated our models using full maximume-likelihood
estimation (Raudenbush & Bryk, 2002; Setia et al., 2012).
The following are equations for the one-way ANOVA
model (Model 1) and full model (Model 6). One-way
ANOVA with random effects model (Model 1):

Perfij = Boj+71,

Full model with cross-level effects (Model 6):

Yij = Boj + B1j * (NoOfStars) + B, * (NoOfStars)® + Bs;
* (NoOfStars) » (PropOfStarCont)
+ B4 * (NoOf Stars)?
* (PropOfStarCont) + Bs;
* (PropOfStarCont) + fs;
* (NoOfStars) * (ProjVel) + B;;
* (NoOfStars)* * (ProjVel) + Bg;
* (NoOfNonStars) + Bo; * (TotYrCont)
+ B1o; * (AveYrCont) + By, * (IssOpen)
+r,

Boj = Yoo * Yo1 * (ProjTenure) + yo, * (OwnTenure) + y,3
* (OwnType) + you * (ProjVel) + uy,

B1j = Y105 B2j = V205 Baj = V305 Baj = Vao; Bsj = Vs0;Bsj =
Y61 * (ProjTenure) + yq, * (OwnTenure) + yg3 *
(OwnType) + y4 * (ProjVel); B;; = v71 * (ProjTenure) +
V72 * (OwnTenure) + y,5 * (OwnType) + Y4 *
(PTOjVel);ﬁgj = Y305 Boj = Y905 B1roj = Y1005 B11j = Y110

The dependent variable, Y;;, represents project quality and
project popularity for a focal project in a focal year. The
periodic observations are denoted as i, with a range from 1
(2015) to 5 (2019), and j denotes the OSS project, which
ranges from 1 to 21,456. The y;; represents project level
variable j on the corresponding f3;; that measures the effect
of periodic level variable i on the performance variables.

Boj = Yoo + Ug
Table 3. Variables
Variable Description and measurement
. . Number of issues closed in the year. Issues are formal requests logged in
OSS project quality . . -
. y the system by OSS community and/or project members, allowing the
Dependent (issues closed) project team to systematically address quality issues in the project.
variables . . Number of bookmarks for the focal project in the year. The OSS platform
OSS project popularity . .
allows users to bookmark a focal project to receive regular updates
(watch events) .
related to the focal project.
Number of star contributors Count of contributors whose contributions are three standard deviations
(NoOfStars) above the mean contribution to an OSS project in a specific year.
Proportion of contributions by star | Ratio of (1) the sum of all the contributions to a focal project in a focal
Independent . . .
. contributors year made by star contributors to (2) the sum of contributions made to
variables Lo
(PropOfStarCont) the focal project in the focal year.
Project Dynamism Average rate of software release per year in the project.
(ProjDyn)
Number of non-star contributors Number of contributors for each year-project dyad with contributions
(NoOfNonStars) less than or equal to three standard deviations of the mean contributions.
Project Tenure Age (in years) of the focal project at the start of a given year.
(ProjTenure)
Owner Account Age Age (in days) of the focal project’s owner at the start of a given year.
(OwnTenure)
Control Owner Type Classification of a focal project owner as individual or organization.
variables (OwnType)
Average contributions in the year | For a focal project and year, average contributions across all contributors.
(AveYrCont)
Total contributions in the year For a focal project and year, total contributions across all contributors.
(TotYrCont)
Issues Opened in the year For a focal project and year, total issues opened.
(IssOpen)

Note: This table provides a description and measurement for each variable used in our empirical analysis. The context of our analysis is an open
source software platform (GitHub). All variables are derived from data provided by GitHub.
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Table 4. Descriptive Statistics and Correlations

Mean SD Min Max 1 2 3 4 5 6 7 8 9 10 1
1 Issues Closed 17.07 91.31 0 7412 -
2 | Watch Events 79.05 | 41837 0 20,416 | 0.43*** -
3 |NoOfStars 0.30 0.63 0 21 0.427%%% | 0.39%+* -
4 |PropOfStarCont | 0.13 024 0 0.995 | 0.22%** | 0.22%** | 0.76%** -
5 | ProjDyn 3.68 27.56 0 4144.33 | 0.06%** | 0.03*** | 0.05%** | 0.05%*** -
6 | NoOfNonStars 18.69 | 9242 2 8,138 [ 0.75%*% | 0.57*%* | 0.49%** | 0.20%** | 0.04%**
7 | ProjTenure 147 1.05 0.08 392 0.00 0.00 | 0.03***| 0.00 0.00 0.00 -
8 |OwnType 0.34 047 0 1 <0027 [ 0.07#%% | 0,03%+* | 0.12%%% | 0.02%** | -0.12%%* | 0.02%** -
9 | OwnTenure 382 239 =791 10.92 | -0.02%** | 0.02%** [ 0.03*** | 0.03%** | -0.02%** | -0.03%** | 0.48*** | 0.27*** -
10 | IssOpen 2034 | 98.18 0 9,107 | 0.94%** | 0.46%** | 0.46%** | 0.23%** | 0.06%** | -0.23%** [ -0.01*** | -0.02%** | -0,03*** -
11 |AveYrCont 2341 | 52733 1.06 |1,03,824| 0.01** | 0.00 -0.01* | -0.01% [ 0.22%* | 0.01* 0.00 -0.01 -0.01 | 0.01%** -
12 | TotYrCont 299.39 |3,011.23 3 432,971 [ 0.61%%* | 0.27*%** | 0.21%** | 0.09%** | 0.11*** | -0.09%**| 0.00 [-0.03***| -0.01** | 0.58*** | 0.46***
Note: N = 21,456 at the open source software project level. Pairwise correlations and univariate statistics are at the periodic level. The significance of coefficients is
evaluated as *p < 0.05, **p < 0.01, ***p < 0.001. Minimum value for OwnTenure is negative.> Upon investigation, we observed that certain users in our sample had
activity before and after creation of their account. For example, consider User A whose account is created on May 25, 2012. In our data, we might observe that User
A has created project abc on May 26, 2012, and project xyz on April 23, 2012. Consequently, the owner’s tenure for project xyz would be logged as a negative value
for project xyz. A possible explanation of this observation is that User A may have deleted and re-created their account. Since OwnTenure is a control variable that
captures how long User A has been an account holder on the GitHub platform, a negative value for project xyz would just show that User A has been on the platform
longer than their most recent account.

5 Results

5.1 Main Results

Tables 5 and 6 present the results of our HLM analyses.
Table 5 details the findings for project quality, while
Table 6 reports the results for project popularity. For each
dependent variable, we first examined the variance across
levels and then assessed the variance explained by the
introduction of independent variables.

The intraclass correlation coefficient (ICC) from the null
model (Model 1 in Tables 5 and 6), which includes only
the intercept, indicates the relative variance in the
dependent variables across periodic and project levels
(Raudenbush & Bryk, 2002). The ICC reveals that a
substantial portion of the variance resided at the project
level (60.92% for project quality and 70.49% for project
popularity), with the remaining variance at the periodic
level. These ICC values justify our utilization of a
multilevel structure and provide a baseline for comparing
model fit. For both dependent variables, we observe a
progressive reduction in variance relative to the null
model as additional independent variables are introduced.
The hypothesis tests for the specific effects of our key
independent variables are presented in Models 4, 5, and 6
in Tables 5 and 6. Model comparisons were conducted
using the deviance statistic, and deviance differences
were assessed via a variance-covariance comparison test.

H1 proposed a curvilinear (inverted U-shaped) relationship
between the number of star contributors and OCC artifact

3 We thank the anonymous reviewer for this discussion.

quality. In alignment with our predictions, the results
indicate an inverted U-shaped relationship, with project
quality peaking at a moderate number of star contributors.
Specifically, Model 4 of Table 5 reveals a negative and
statistically significant coefficient for the squared term
NoOfStars® (B = -1.466, p < 0.001), supporting H1. This
inverted U-shaped relationship is visually depicted in Panel
(2) of Appendix Figure A2.

H2 posited a curvilinear (inverted U-shaped) relationship
between the number of star contributors and project
popularity. In accordance with our predictions, the results
demonstrate an inverted U-shaped relationship, with
project popularity peaking at a moderate number of star
contributors. Specifically, Model 4 of Table 6 reveals a
negative and statistically significant coefficient for the
squared term NoOfStars’ (B = 2983, p < 0.001),
supporting H2. This inverted U-shaped relationship is
visually depicted in Panel (b) of Appendix Figure A2.

H3 proposed that the proportion of contributions by star
contributors moderates the relationship between the
number of star contributors and artifact quality, such that an
increase in the proportion of star contributions strengthens
the inverted U-shaped relationship. Model 5 of Table 5
reveals a statistically significant and negative coefficient
for the interaction term NoOfStars® x PropOfStarCont (B
=-1.413, p <0.001), indicating that a higher proportion of
star contributions strengthens the curvilinear effect on
artifact quality. This strengthening effect is visually
depicted in Panel (a) of Appendix Figure A3.
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Table 5. Results of HLM Estimation (OSS Product Quality)

(A Dev)

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Intercept 15.956%** 16.532%** | 15.54]%%* 14.799%** 12.459%** 12.589%**
(0.510) (0.625) (0.625) (0.631) (0.636) (0.645)
NoOfNonStars 0.115%** 0.109%** 0.122%** 0.126%** 0.152%*%*
(0.003) (0.003) (0.003) (0.003) (0.003)
ProjTenure 0.401 0.622%** 0.895%** 0.583** 0.276
(0.219) (0.219) (0.219) (0.218) (0.230)
OwnTenure -0.098 -0.337 -0.600%*** -0.24 -0.086
(0.178) (0.178) (0.179) (0.178) (0.182)
AveYrCont -0.008*** -0.008*** -0.007*** -0.007*** -0.006***
(0.000) (0.000) (0.000) (0.000) (0.000)
TotYrCont 0.005%** 0.005%** 0.004*** 0.004*** 0.004***
(0.000) (0.000) (0.000) (0.000) (0.000)
OwnType -2.276* -2.146* -2.235%* -3.744%** -4.040%**
(1.090) (1.079) (1.088) (1.078) (1.113)
ProjDyn 0.133%%* 0.130%** 0.129%%** 0.124%%* 0.085%%**
(0.016) (0.016) (0.016) (0.016) (0.016)
IssOpen 0.685%** 0.682%** 0.684*** 0.680%** 0.692%%**
(0.002) (0.002) (0.002) (0.003) (0.003)
NoOfStars 3.110%** 7.919%** 13.516%** 10.136%**
(0.278) (0.342) (0.588) (0.615)
NoOfStars? -1.466%** -1.936%** -0.969%***
(0.059) (0.080) (0.088)
PropOfStarCont -39.282%*%* -42.394 %%
(1.765) (1.824)
NoOfStars x PropOfStarCont 44.657*** 61.149%**
(2.360) (2.557)
NoOfStars’* PropOfStarCont -1.413%%* -7.506%**
(0.415) (0.567)
NoOfStars x ProjTenure 0.797**
(0.243)
NoOfStars x OwnTenure -0.078
(0.156)
NoOfStars x OwnType 1.794%*
(0.808)
NoOfStars x ProjDyn 0.644%**
(0.020)
NoOfStars® x ProjTenure 0.004
(0.031)
NoOfStars? x OwnTenure -0.100%%*
(0.026)
NoOfStars? x OwnType -1.490%%*
(0.206)
NoOfStars? x ProjDyn -0.187%**
(0.005)
Deviance
(-2 log likelihood) 984517.4 898237.0 898118.0 897511.6 896825.0 895168.3
Deviation difference 86280.4%%* | 119,0%*x 606,47 686.6% 1656.7%%*

in parentheses.

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at Level 2. Deviation differences were calculated
as the difference between the current model and the previous model, i.e., A D2 = D2-D1 and A D5 = D5-D4. The significance of difference was
tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors
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Table 6. Results of HLM Estimation (OSS Product Popularity)

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Intercept 73.867*** 52.110%** 31.858*** 30.542%** 22.298*** 24271 *%*
(2.455) (3.070) (2.998) (3.020) (3.085) (3.079)
NoOfNonStars 1.699%*** 1.582%** 1.607*** 1.598*** 1.766***
(0.018) (0.019) (0.019) (0.019) (0.020)
ProjTenure -3.944%* -1.407 -1.065 -2.411 3.587**
(1.293) (1.270) (1.273) (1.271) (1.358)
OwnTenure 0.095 -3.097** =343k -2.816%* -2.876%*
(1.006) (0.983) (0.987) (0.983) (1.012)
AveYrCont -0.007** -0.009** -0.008** -0.008** -0.006*
(0.003) (0.003) (0.003) (0.003) (0.003)
TotYrCont 0.004*** 0.005%** 0.004%** 0.004%** 0.003%**
(0.001) (0.001) (0.001) (0.001) (0.001)
OwnType 65.348%** 65.700%** 65.282%** 62.092%** 39.584%**
(5.347) (5.132) (5.158) (5.127) (5.294)
ProjDyn 0.326%** 0.264%** 0.261%** 0.237** 0.121
(0.080) (0.076) (0.077) (0.076) (0.077)
IssOpen 0.166%** 0.095%** 0.099%%** 0.089%** 0.059%**
(0.017) (0.017) (0.017) (0.018) (0.018)
NoOfStars 67.676*** 77.233%** 111.071%%* 100.373%%*
(1.842) (2.293) (3.686) (3.926)
NoOfStars’ -2.983%%* -5.152%** -4.759%*x*
(0.401) (0.522) (0.590)
PropOfStarCont -107.483*** -155.986***
(11.417) (11.801)
NoOfStars x 15.043 18.112
PropOfStarCont (15.769) (17.236)
NoOfStars®* 7.636%* 9.904*
PropOfStarCont (2.802) (3.911)
NoOfStars -15.349%**
ProjTenure (1.686)
NoOfStars x -1.961
OwnTenure (1.061)
NoOfStars x 77.978***
OwnType (5.489)
NoOfStars x 1.446%**
ProjDyn (0.131)
NoOfStars® x -1.050%%*
ProjTenure (0.215)
NoOfStars® x -1.235%%%
OwnTenure (0.175)
NoOfStars® x -3.435%
OwnType (1.433)
NoOfStars? x -0.378%%*
ProjDyn (0.032)
Deviance
(-2 log likelihood) 1232581 1219069 1217800 1217747 1217523 1216346
Deviance difference
13512%** 1269%*** 53.7%** 223.3%*%* 1177.6%**

(A Dev)

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at level 2. Deviation differences were calculated
as the difference between the current model and the previous model, i.e., A D2=D2-D1 and A D5=D5-D4. The significance of difference was
tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors

in parentheses.
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H4 posited that the proportion of contributions by star
contributors moderates the relationship between the
number of star contributors and artifact popularity, such
that an increase in the proportion of star contributions
strengthens the effect on artifact popularity. Contrary to
our expectations, Model 5 of Table 6 reveals a
statistically significant and positive coefficient for the
interaction term NoOfStars’ x PropOfStarCont (B =
7.636, p < 0.01), indicating that a higher proportion of
star contributions weakens rather than strengthens the
relationship. Therefore, H4 is not supported. This
weakening effect is visually depicted in Panel (b) of
Appendix Figure A3. Theoretically, this empirical result
suggests that a disproportionate proportion of
contributions attributed to star contributors does not
necessarily provide a consequential negative signal
related to vulnerabilities associated with attrition,
contributor stress, resource limitations, and the
homogeneity of contributions.

HS proposed that the level of environmental dynamism
moderates the relationship between the number of star
contributors and artifact quality, such that increased
environmental dynamism strengthens the inverted U-
shaped relationship. We tested this hypothesis using a
cross-level interaction analysis. The results in Model 6
of Table 5 reveal a statistically significant and negative
coefficient for the interaction term NoOfStars’ x
ProjDyn (B =-0.187, p < 0.001), indicating that higher
environmental dynamism strengthens the curvilinear
effect on artifact quality. Therefore, H5 is supported.
This strengthening effect is visually depicted in Panel
(a) of Appendix Figure A4.

H6 posited that the level of environmental dynamism
moderates the relationship between the number of star
contributors and artifact popularity, such that increased
environmental dynamism strengthens the inverted U-
shaped relationship. Consistent with H5, we tested this
hypothesis using a cross-level interaction analysis. The
results in Model 6 of Table 6 reveal a statistically
significant and negative coefficient for the interaction
term NoOfStars’ x ProjDyn (B = -0.378, p < 0.001),
indicating that higher project dynamism strengthens the
curvilinear effect on artifact popularity. Therefore, H6 is
supported. This strengthening effect is visually depicted
in Panel (b) of Appendix Figure A4.

Table 7 provides a concise summary of our main
findings, alongside their corresponding theoretical
justifications.

5.2 Robustness Analyses

We conducted several robustness checks to ensure the
reliability of our findings. Given the panel structure of
our data, the potential for omitted variable bias is
mitigated (Wooldridge, 2010).
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5.2.1 Measurement Errors

Measurement ~ error can  arise  when  the
operationalization of variables does not accurately
capture their true values. To mitigate this concern, we
demonstrate the robustness of our results by employing
alternative measures and operationalizations for our
key wvariables. First, while our star contributor
identification criteria, based on prior literature (Hess &
Rothaermel, 2011; Rothaermel & Hess, 2007), utilized
a threshold of 3 standard deviations above the mean
contribution, we acknowledge that this may be overly
restrictive, potentially excluding high contributors who
do not meet this criterion. Therefore, we relaxed the
threshold to 1 standard deviation above the mean
contribution. The results, presented in Models 1
through 3 (for project quality) and Models 4 through 6
(for project popularity) in Appendix Table Al, remain
qualitatively consistent with our main findings. Second,
our primary sampling strategy included projects with at
least two contributors per year. Recognizing that this
threshold might bias the identification of star
contributors, we extended the criterion to include only
projects with at least five contributors per year, a
threshold consistent with prior OSS studies (e.g.,
Daniel et al., 2013). The results, presented in Models 1
through 3 (project quality) and Models 4 through 6
(project popularity) in Appendix Table A2, are
qualitatively consistent with our main findings.

5.2.2 Alternate Measures for OSS Product
Quality and Popularity

In our primary analysis, project quality was
operationalized using the number of issues closed. For
this robustness check, we employed the number of
bugs/issues reported in an OSS project as an alternative
proxy for project quality (Setia et al., 2012). This
approach assumes that a project with zero or a
relatively low number of reported issues indicates
higher quality than a project with a high number of
reported issues. The results, presented in Models 1
through 3 of Appendix Table A3, revealed a U-shaped
relationship between the number of star contributors
and the number of reported issues. Specifically, the
number of reported issues was lowest at a moderate
number of star contributors, corroborating our main
findings regarding OSS project quality. Similarly, in
our primary analysis, project popularity was
operationalized using the number of bookmarks
received. For this robustness check, we utilized the
number of times a project was forked (i.e., making a
copy of the project for study, editing, or contribution)
as an alternative measure of project popularity. The
results, presented in Models 4 through 6 of Appendix
Table A3, remain qualitatively consistent with our
main findings.
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Table 7. Summary of Main Findings and Theoretical Justification

Hypotheses

Theoretical and empirical justification

H1: The number of star contributors
contributing to an online open collaboration
community artifact is curvilinearly related to
the artifact’s quality, such that a moderate
number of star contributors correlates with
the highest quality (inverted U-shaped
relationship).

Optimal levels of star contributors provide a balance between
coordination cost, redundancy reduction, and heterogeneity of ideas, and
a balance between available resources and work.

Model 4 in Table 5 shows a negative and significant coefficient for the
squared term NoOfStar? (B =-1.466, p < 0.001).

H2: The number of star contributors
contributing to an online open collaboration
community artifact is curvilinearly related to
the artifact’s popularity, such that a moderate
number of star contributors correlates with
the highest increase in popularity (inverted
U-shaped relationship).

Optimal levels of star contributors attract OCC members, allow
reciprocity, identify resourceful individuals to associate with, enjoy
significant followership, and underscore the activeness of the artifact to
attract OCC members.

Model 4 of Table 6 shows negative and significant coefficients for the
squared term NoOfStars? (B =-2.983, p < 0.001).

H3: The relative proportion of the star
contributors’ contributions moderates the
relationship between the number of star
contributors and the artifact’s quality, such
that an increase in the relative proportion of
their contributions strengthens the effect on
artifact quality (i.e., the curve is more
pronounced).

Proportion of star contributors’ contributions at an optimal threshold
supports coordination, reciprocity, skill-task match, and influences peers’
productivity.

Model 5 of Table 5 shows a significant and negative coefficient for the
term NoOfStars® x PropOfStarCont (p=-1.413, p < 0.001), indicating
that the proportion of total contribution made by stars strengthens the
relationship.

H4: The relative proportion of star
contributors’ contributions moderates the
relationship between the number of star
contributors and artifact popularity, such that
an increase in the relative proportion of their
contributions strengthens the effect on
artifact popularity (i.e., the curve is more
pronounced).

Proportion of star contributors’ contributions at optimal threshold
supports associating with resourceful individuals and draws community
attention.

Model 5 of Table 6 shows a significant but positive coefficient for the
term NoOfStars? x PropOfStarCont (B = 7.636, p < 0.01), indicating that
the proportion of total contribution made by stars weakens the
relationship.

HS5: The level of OCC artifact environmental
dynamism moderates the relationship
between the number of star contributors and
artifact quality, such that an increase in the
OCC artifact environmental dynamism
strengthens the effect on artifact quality (i.e.,
the curve is more pronounced).

Increase in environmental dynamism is supported by star contributors’
knowledge of norms and rules, efficiency, and reduced coordination
costs.

Model 6 of Table 5 shows a significant and negative coefficient for the
term NoOfStars® x ProjDyn (B =-0.187, p < 0.001), indicating that
environmental dynamism strengthens the relationship.

Hé6: The level of OCC artifact environmental
dynamism for an artifact moderates the
relationship between the number of star
contributors and artifact popularity, such that
an increase in the OCC artifact
environmental dynamism strengthens the
effect on artifact popularity (i.e., the curve is
more pronounced).

Increase in environmental dynamism is supported by star contributors’
influence on artifact success, positive synergy, and contribution metrics.

Model 6 of Table 6 shows a negative and significant coefficient for the
term NoOfStars® x ProjDyn (B =-0.378, p < 0.001), indicating that
project dynamism strengthens the relationship.

5.2.3 Accounting for Endogeneity

To address potential endogeneity concerns, specifically
Level 2 (cross-level) endogeneity, where the random
intercept may be correlated with a Level 1 independent
variable, we utilized the endogeneity-robust Mundlak
approach (Mundlak, 1978) by incorporating correction
terms. Mundlak’s approach involves including the
project-level means of time-varying covariates in the

HLM. This helps control for unobserved heterogeneity
that may correlate with our key independent variables,
and it separates within-project variation from between-
project variation (Snijders & Berkhof, 2008), thereby
mitigating potential endogeneity. The results, presented
in Models 1 through 3 (for project quality) and Models
4 through 6 (for project popularity) of Appendix Table
A4, remain consistent with our main findings.
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5.2.4 Falsification Test

To rule out the possibility of spurious correlations in our
HLM results, we conducted a falsification check. This
check examined the hypothesized relationships between
the number of star contributors and the dependent
variables (project quality and popularity) using
reshuffled time periods. Specifically, we randomly
shuffled the dependent variable entries for each project,
disrupting their chronological order and thus
misaligning them with their corresponding independent
and control variable entries. If significant estimates
supporting our hypothesized relationships were
observed in this randomized, non-chronological data, it
would suggest spurious correlations. However, the
results of our falsification tests, presented in Models 1
through 3 (for project quality) and Models 4 through 6
(for project popularity) of Appendix Table A5, do not
support our hypotheses and are inconsistent with our
main analyses. This indicates that our HLM results are
unlikely to have been driven by spurious correlations.

6 Discussion

6.1 Theoretical Contributions

This study makes three theoretical contributions. First,
this study contributes to the growing interdisciplinary
research on the role and impact of star contributors in
collaborative work settings. Existing research has
mostly focused on their role and effect in traditional
offline organizational work settings (Call et al., 2021;
Hess & Rothaermel, 2011; Taylor & Bendickson, 2021),
where individuals’ compensation and work are managed
by employers, and their contributions are governed by
organizational rules. Our findings build on and extend
the literature on the role of stars by showing their impact
in non-traditional online self-organizing work settings,
where the boundaries are more fluid, individual
contributors are unpaid and work on their own terms,
and there are often no organizationally imposed rules.
Also, limited research exists on the effect of the relative
proportion of stars’ contributions while recognizing how
the disparity in contributions within a group affects
work outcomes (Daniel et al., 2013). This research is
one of the first to show that disparity in contributions
arising from the relative proportion of contributions
made by star contributors in OCC artifact moderates the
relationship between star contributors’ contributions
and artifacts’ quality and popularity. Prior studies have
maintained a fixed proportion (usually based on the 80-
20 rule) between star and non-star contributors (e.g., Lin
and Wang, 2020; Setia et al.,, 2012). Our findings
indicate that while the relationship between star
contributors’ contributions and OCC artifact quality is
stronger when stars contribute a higher proportion of the
overall efforts in the artifact, the relationship between
star contributors’ contributions and OCC artifact
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popularity is weaker when stars contribute a higher
proportion.

Second, we contribute to research on OCC, particularly
studies investigating how different categories of OCC
participants affect key outcomes (Jarczyk et al., 2018;
Lin & Wang, 2020; Setia et al., 2012). These studies
have predominantly taken the core-periphery view in
categorizing participants, where they identify the
participant’s category by their network position
(Dahlander & Frederiksen, 2012; Safadi et al., 2021) or
a fixed contribution level (Lin & Wang, 2020; Setia et
al., 2012). Although the core-periphery participant
structure is important, we extend this literature by
introducing the concept of the star contributor, a
category of participant that, while not always present,
can significantly reshape community dynamics. Star
contributors’ recent and disproportionate contributions
can drive significant improvements in artifact quality
and influence its popularity. We show that this category
of contributor can affect OCC artifact quality and
popularity in a nonlinear manner, highlighting the
importance of considering this distinct group in OCC
research.

Finally, we extend the literature by theorizing the role of
the OCC artifact environment on OCC outcomes. Prior
research has shown that the characteristics of OCC
environments align with the impact of different
categories of contributors. For instance, Lin and Wang
(2020) and Setia et al. (2012) showed that peripheral
contributors are most impactful on established or
matured OCC artifacts. Our research contributes by
highlighting that the effect of star contributors is more
pronounced in dynamic environments, which are
characterized by a high rate of change and uncertainty.
In such environments, the demand for contributions is
more intense, as the community grapples with new
information, challenges, and opportunities.
Consequently, the impact of occasional contributions is
diminished, while the focused and sustained efforts of
star contributors become critical for driving artifact
development and success.

6.2 Implications for Online Collaboration
Communities

Our findings have three implications for research on
online collaboration communities. First, earlier studies
on OCCs identify intrinsic (e.g., happiness, sense of
community) (Kankanhalli et al., 2005; Wasko & Faraj,
2005) and extrinsic (Lerner & Tirole, 2002; Xu et al.,
2020) motivations to contribute. This research
complements these streams of research to advance
research focusing on OCC members’ strategic behavior
(e.g., association with resourceful OCC members) to
satisfy  their participation objectives.  Strategic
participation highlights the important role of signals
emitted, received, and perceived by OCC members and
artifacts. Second, a prevalent view in research on OCCs



is that contributions are essential for sustaining OCC
artifacts (Butler, 2001; Chengalur-Smith et al., 2010;
Mindel et al., 2018). Our findings indicate that while star
contributors’ contributions positively affect an artifact’s
quality and popularity, this effect is moderated by the
relative proportion of star contributors’ contributions.
These findings also offer opportunities for future
research related to the impact of the relative proportion
of star contributors’ contributions on artifact takeoff
(Setia et al., 2020), the impact of external factors (e.g.,
nudge by OCC network members) (Qian & Jain, 2024),
and exogenous shocks (Kummer et al., 2020; Malgonde
et al., 2023). Finally, this research extends the core-
periphery distinction adopted in prior work using a data-
driven approach that accounts for the OCC artifact’s
fluidity (Faraj et al., 2011). Prior research suggests that
peripheral contributors tend to be more impactful in the
later stages of the OCC artifact (Setia et al., 2012). Our
findings complement this by highlighting the role of
environmental dynamism.

This research also extends the theory on collective
action (Oliver & Marwell, 1988). Specifically, the
theory of collective action suggests that a small group
of contributors from a relatively larger group is
sufficient to develop the critical mass required to
instigate broader contributions. However, our findings
suggest that the proportion of contributors by the initial
group of contributors may negatively impact artifacts’
quality and popularity, with a downstream effect on
community participation.

6.3 Managerial Implications

We note two managerial implications of this research.
First, our results suggest a positive effect of the
proportion of star contributors’ contributions on artifact
quality but a negative effect on artifact popularity.
Consequently, a key implication for OCC artifact
managers and platform owners is how to devise policies
(e.g., throttle type of contributions), incentive
mechanisms (e.g., rewards for critical vulnerabilities),
and platform governance mechanisms (e.g.,
recommender systems) to manage (e.g., identify
alternate contributors, recommend alternate artifacts)
the proportion of star contributors’ contributions.
Importantly, devised mechanisms are part of a portfolio
of mechanisms that are available to artifact managers.
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Second, we discuss the moderating role of the OCC
artifact’s environmental dynamism. For OCC artifact
managers, the use of action levers that alter signals of
dynamism is important. For example, OSS projects may
alter their schedule of releases to signal a shift in
dynamism.  Similarly, question-and-answer-based
artifacts may alter administrative edits to signal reduced
dynamism. By strategically adjusting these signals,
OCC artifact managers can influence the level and
breadth of participation, ultimately affecting the
artifact’s quality and popularity.

6.4 Limitations and Future Research
Directions

Three limitations of this study offer opportunities for
future studies. First, while based on existing literature,
defining star contributors solely by contribution volume
(three standard deviations above the mean) may be a
limitation. For example, Asgari et al. (2021) suggested
that star contributors might be identified not only by their
performance (contributions) but also by a combination of
performance, status, visibility, and social capital. Hence,
future studies could consider expanding the
operationalization of star contributors. Second, our study
sample was drawn exclusively from GitHub, focusing on
open source software projects. Because OCCs and
participant contribution behaviors can differ significantly
across domains and platforms, the generalizability of our
findings may be limited. Future studies could extend this
inquiry to other domains and platforms. Finally, although
our study focuses on stars, future research could explore
the role of non-stars in artifacts’ quality and popularity
using our conceptualization.

In this research, we focus on star contributors and the
effect of their contributions on OCC artifacts’ quality
and popularity. This research complements existing
studies on factors contributing to OCC artifacts’ success
and extends prior work by focusing on the critical yet
under-researched role of star contributors. Our findings
suggest that star contributors play a significant role in
driving the success of OCC artifacts.

Acknowledgements

The authors thank the senior editor and the anonymous
reviewers for providing constructive guidance and
comments.

282



Journal of the Association for Information Systems

References

Aguinis, H., & O’Boyle, E., Jr. (2014). Star performers in
twenty-first century organizations. Personnel
Psychology, 67(2), 313-350.

Ahuja, G. (2000). Collaboration networks, structural
holes, and innovation: A longitudinal study.
Administrative Science Quarterly, 45, 425-455.

Asgari, E., Hunt, R. A., Lerner, D. A., Townsend, D. M.,
Hayward, M. L., & Kiefer, K. (2021). Red giants
or black holes? The antecedent conditions and
multilevel impacts of star performers. Academy of
Management Annals, 15(1), 223-265.

Baba, Y., Shichijo, N., & Sedita, S. R. (2009). How do
collaborations with universities affect firms’
innovative performance? The role of “Pasteur
scientists” in the advanced materials field.
Research Policy, 38(5), 756-764.

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., &
Slaughter, S. (2003). Is “internet-speed” software
development different? IEEE Software, 20(6), 70-
77.

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E., &
Damian, D. (2016). Understanding the popular
users: Following, affiliation influence and
leadership on GitHub. Information and Sofiware
Technology, 70, 30-39.

Bockstedt, J., Druehl, C., & Mishra, A. (2022). Incentives
and stars: Competition in innovation contests with
participant and submission visibility. Production
and Operations Management, 31(3), 1372-1393.

Brooks, F. P., Jr. (1987). No silver bullet essence and
accidents of software engineering. Computer,
20(4), 10-19.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.
D., Dhariwal, P., . . . Askell, A. (2020). Language
models are few-shot learners. Proceedings of the
34th  International Conference on Neural
Information Processing Systems (pp. 877-1901).

Burke, M. A., Fournier, G. M., & Prasad, K. (2007). The
diffusion of a medical innovation: Is success in the
stars? Southern Economic Journal, 73(3), 588-
603.

Burtch, G., He, Q., Hong, Y., & Lee, D. (2022). How do
peer awards motivate creative content?
Experimental evidence from Reddit. Management
Science, 68(5), 3488-3506.

Butler, B. S. (2001). Membership size, communication
activity, and sustainability: A resource-based
model of online social structures. Information
Systems Research, 12(4), 346-362.

283

Call, M. L., Campbell, E. M., Dunford, B. B., Boswell,
W. R., & Boss, R. W. (2021). Shining with the
stars? Unearthing how group star proportion
shapes  non-star  performance.  Personnel
Psychology, 74(3), 543-572.

Campbell, E. M. (2014). Effects sparked by shining stars:
Consequences earned and posed by high
performers at work [Doctoral dissertation]
University of Maryland.

Chengalur-Smith, I., Sidorova, A., & Daniel, S. L.
(2010). Sustainability of free/libre open source
projects: A longitudinal study. Journal of the
Association for Information Systems, 11(11).

Colazo, J., & Fang, Y. (2010). Following the sun:
Temporal dispersion and performance in open
source software project teams. Journal of the
Association for Information Systems, 11(11), 684-
707.

Cram, W. A., Brohman, K., & Gallupe, R. B. (2016).
Information systems control: A review and
framework for emerging information systems
processes. Journal of Association for Information
Systems, 17(4), 216-266.

Dahlander, L., & Frederiksen, L. (2012). The core and
cosmopolitans: A relational view of innovation in
user communities. Organization Science, 23(4),
988-1007.

Dahlander, L., & O’Mahony, S. (2011). Progressing to
the center: Coordinating project work.
Organization Science, 22(4), 961-979.

Daniel, S., Agarwal, R., & Stewart, K. J. (2013). The
effects of diversity in global, distributed
collectives: A study of open source project

success. Information Systems Research, 24(2),
312-333.

Falk, A., & Ichino, A. (2006). Clean evidence on peer
effects. Journal of Labor Economics, 24(1),39-57.

Faraj, S., Jarvenpaa, S. L., & Majchrzak, A. (2011).
Knowledge collaboration in online communities.
Organization Science, 22(5), 1224-1239.

Faraj, S., Kudaravalli, S., & Wasko, M. (2015). Leading
collaboration in online communities. MIS
Quarterly, 39(2), 393-412.

Faraj, S., & Sproull, L. (2000). Coordinating expertise in
software development teams. Management
Science, 46(12), 1554-1568.

Faraj, S., von Krogh, G., Monteiro, E., & Lakhani, K. R.
(2016). Special section introduction—Online
community as space for knowledge flows.
Information Systems Research, 27(4), 668-684.

Feller, J., Finnegan, P., Fitzgerald, B., & Hayes, J. (2008).
From peer production to productization: A study



of socially enabled business exchanges in open
source service networks. Information Systems
Research, 19(4), 475-493.

Foerderer, J., Gutt, D., & Greenwood, B. (2023). Star
wars: An empirical investigation of star performer
turnover and content supply on multi-sided
streaming platform SSRN. https://papers.ssrn.
com/sol3/papers.cfm?abstract id=4321163

Forte, A., & Lampe, C. (2013). Defining, understanding,
and supporting open collaboration: Lessons from
the literature. American Behavioral Scientist,
57(5), 535-547.

Grewal, R., Lilien, G. L., & Mallapragada, G. (2006).
Location, location, location: How network
embeddedness affects project success in open
source systems. Management Science, 52(7),
1043-1056.

Grigoriou, K., & Rothaermel, F. T. (2014). Structural
microfoundations of innovation: The role of
relational stars. Journal of Management, 40(2),
586-615.

Groysberg, B., Lee, L.-E., & Nanda, A. (2008). Can they
take it with them? The portability of star
knowledge workers’ performance. Management
Science, 54(7), 1213-1230.

Groysberg, B., Polzer, J. T., & Elfenbein, H. A. (2011).
Too many cooks spoil the broth: How high-status
individuals  decrease group effectiveness.
Organization Science, 22(3), 722-7317.

Hann, I.-H., Roberts, J., & Slaughter, S. A. (2013). All are
not equal: An examination of the economic
returns to different forms of participation in open
source software communities. Information
Systems Research, 24(3), 520-538.

Harris, M. L., Collins, R. W., & Hevner, A. R. (2009).
Control of flexible software development under

uncertainty. Information Systems Research, 20(3),
400-419.

Hess, A. M., & Rothaermel, F. T. (2011). When are assets
complementary?  Star  scientists, strategic
alliances, and innovation in the pharmaceutical
industry. Strategic Management Journal, 32(8),
895-909.

Hofmann, D. A. (1997). An overview of the logic and
rationale of hierarchical linear models. Journal of
Management, 23(6), 723-744.

Huang, P., & Zhang, Z. (2016). Participation in open
knowledge communities and job-hopping:
Evidence from enterprise software. MIS
Quarterly, 40(3), 785-806.

Ichniowski, C., & Preston, A. (2014). Do star performers
produce more stars? Peer effects and learning in

Star Contributors in Online Collaboration Communities

elite teams [NBER Working Paper 20478].
NBER. http://www.nber.org/papers/w20478

Jarczyk, O., Jaroszewicz, S., Wierzbicki, A., Pawlak, K.,
& Jankowski-Lorek, M. (2018). Surgical teams on
GitHub: Modeling performance of GitHub project
development processes. Information and Software
Technology, 100, 32-46.

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P. S., & Zhang,
L. (2017). Why and how developers fork what
from whom in GitHub. Empirical Software
Engineering, 22(1), 547-578.

Jiang, Q., Tan, C.-H., Sia, C. L., & Wei, K.-K. (2019).
Followership in an open-source software project
and its significance in code reuse. MIS Quarterly,
43(4), 1303-1319.

Jones, Q., Ravid, G., & Rafaeli, S. (2004). Information
overload and the message dynamics of online
interaction spaces: A theoretical model and
empirical exploration. Information Systems
Research, 15(2), 194-210.

Kane, G., & Ransbotham, S. (2016). Content as
community regulator: The recursive relationship
between consumption and contribution in open
collaboration communities. Organization
Science, 27(5), 1258-1274.

Kankanhalli, A., Tan, B. C. Y., & Wei, K. (2005).
Contributing knowledge to electronic knowledge
repositories: An empirical investigation. MIS
Quarterly, 29(1), 113-143.

Kankanhalli, A., Zuiderwijk, A., & Tayi, G. K. (2017).
Open innovation in the public sector: A research
agenda. Government Information Quarterly,
34(1), 84-89.

Kreft, I. G., Kreft, 1., & de Leeuw, J. (1998). Introducing
multilevel modeling. SAGE.

Kuk, G. (2006). Strategic interaction and knowledge
sharing in the KDE developer mailing list.
Management Science, 52(7), 1031-1042.

Kummer, M., Slivko, O., & Zhang, X. (2020).
Unemployment and digital public goods
contribution. Information Systems Research,
31(3), 801-819.

Lakhani, K. R., & Von Hippel, E. (2003). How open
source software works: “free” user-to-user
assistance. Research Policy, 32, 923-943.

Lam, C. K., Van der Vegt, G. S., Walter, F., & Huang, X.
(2011). Harming high performers: A social
comparison perspective on interpersonal harming
in work teams. Journal of Applied Psychology,
96(3), 588-601.

Lee, M. J., Ferwerda, B., Choi, J., Hahn, J., Moon, J. Y.,
& Kim, J. (2013). GitHub developers use

284


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4321163
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4321163
http://www.nber.org/papers/w20478

Journal of the Association for Information Systems

rockstars to overcome overflow of news. CHI '3
Extended Abstracts on Human Factors in
Computing Systems (pp. 133-138).

Lerner, J., & Tirole, J. (2002). Some simple economics of
open source. The Journal of Industrial
Economics, 50(2), 197-234.

Lerner, J., & Tirole, J. (2005). The economics of
technology sharing: Open source and beyond.
Journal of Economic Perspectives, 19(2), 99-120.

Levina, N., & Arriaga, M. (2014). Distinction and status
production on user-generated content platforms:
Using Bourdieu’s theory of cultural production to
understand social dynamics in online fields.
Information Systems Research, 25(3), 468-488.

Levine, S. S., & Prietula, M. J. (2014). Open collaboration
for innovation: Principles and performance.
Organization Science, 25(5), 1414-1433.

Lin, Y., & Chen, Y. (2018). Do less active participants
make active participants more active? An
examination of Chinese Wikipedia. Decision
support systems, 114, 103-113.

Lin, Y., & Wang, C. (2020). Wisdom of crowds: The
effect of participant composition and contribution
behavior on Wikipedia article quality. Journal of
Knowledge Management, 24(2), 324-345.

Malgonde, O. S., Saldanha, T. J., & Mithas, S. (2023).
Resilience in the open source software
community: How pandemic and unemployment
shocks influence contributions to others’ and
one’s own projects. MIS Quarterly, 47(1), 361-
390.

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009).
A control theory perspective on agile
methodology use and changing user requirements.
Information Systems Research, 20(3), 377-399.

Mas, A., & Moretti, E. (2009). Peers at work. American
Economic Review, 99(1), 112-145.

Medappa, P. K., & Srivastava, S. C. (2019). Does
superposition influence the success of FLOSS
projects? An examination of open-source
software development by organizations and
individuals. Information Systems Research, 30(3),
764-786.

Mindel, V., Mathiassen, L., & Rai, A. (2018). The
sustainability of  polycentric  information
commons. MIS Quarterly, 42(2), 607-632.

Mogqri, M., Mei, X., Qiu, L., & Bandyopadhyay, S.
(2018). Effect of “following” on contributions to
open source communities. Journal of
Management Information Systems, 35(4), 1188-
1217.

285

Mundlak, Y. (1978). On the pooling of cross-section and
time-series data. Econometrica, 46(1), 69-85.

Oliver, P. E., & Marwell, G. (1988). The paradox of
group size in collective action: A theory of the
critical mass. 1. American Sociological Review,
53(1), 1-8.

Overbeck, J. R., Correll, J., & Park, B. (2005). Internal
status sorting in groups: The problem of too many
stars. In M. C. Thomas-Hunt (Eds.), Status and
groups (169-199). Emerald.

Overflow, S. (2023). Temporary policy: Generative Al
(eg, ChatGPT) is banned. Stackoverflow Meta.
https://meta.stackoverflow.com/questions/42183
1/policy-generative-ai-e-g-chatgpt-is-banned .

Peng, G. (2019). Co-membership, networks ties, and
knowledge flow: An empirical investigation
controlling for alternative mechanisms. Decision
Support Systems, 118, 83-90.

Qian, K., & Jain, S. (2024). Digital content creation: An
analysis of the impact of recommendation
systems. Management Science.70(12),8217-9119

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical
linear models: Applications and data analysis
methods (Vol. 1). SAGE.

Rothaermel, F. T., & Hess, A. M. (2007). Building
dynamic capabilities: Innovation driven by
individual-, firm-, and network-level effects.
Organization Science, 18(6), 898-921.

Rullani, F., & Haefliger, S. (2013). The periphery on
stage: The intra-organizational dynamics in online
communities of creation. Research Policy, 42(4),
941-953.

Safadi, H., Johnson, S. L., & Faraj, S. (2021). Who
contributes knowledge? Core-periphery tension in
online innovation communities. Organization
Science, 32(3), 752-775.

Setia, P., Bayus, B., & Rajagopalan, B. (2020). The
takeoff of open source software: A signaling
perspective based on community activities. MIS
Quarterly, 44(3), 1439-1458.

Setia, P., Rajagopalan, B., Sambamurthy, V., &
Calantone, R. (2012). How peripheral developers
contribute to open-source software development.
Information Systems Research, 23(1), 144-163.

Singh, P. V., Tan, Y., & Mookerjee, V. (2011). Network
effects: The influence of structural capital on open
source project success. MIS Quarterly, 35(4), 813-
829.

Snijders, T. A., & Berkhof, J. (2008). Diagnostic checks
for multilevel models. In J. de Leeuw & E. Meijer
(Eds.), Handbook of multilevel analysis (pp. 141-
175). Springer.



Taylor, E. C.,, & Bendickson, J. S. (2021). Star
performers, unit performance and unit turnover: A
constructive  replication. Human  Resource
Management Journal, 31(4), 977-994.

Von Krogh, G., Haefliger, S., Spaeth, S., & Wallin, M.
(2012). Carrots and rainbows: Motivation and
social practice in open source software
development. MIS Quarterly, 36(2), 649-676.

Wasko, M. M., & Faraj, S. (2005). Why should I share?
Examining social capital and knowledge
contribution in electronic networks of practice.
MIS Quarterly, 29(1), 35-57.

Wasko, M. M., Teigland, R., & Faraj, S. (2009). The
provision of online public goods: Examining
social structure in an electronic network of
practice. Decision Support Systems, 47(3), 254-
265.

Weng, Q., & Soh, F. (2023). The influence of project
initiators’  person-to-person followership on
project popularity in open source communities:
The role of reach and importance. The Journal of
Strategic Information Systems, 32(2), 101771.

Wooldridge, J. M. (2010). Econometric analysis of cross
section and panel data. MIT Press.

Star Contributors in Online Collaboration Communities

Wu, F., Wilkinson, D. M., & Huberman, B. A. (2009).
Feedback loops of attention in peer production.
Proceedings of the International Conference on
Computational Science and Engineering,

Xu, L., Nian, T., & Cabral, L. (2020). What makes geeks
tick? A study of Stack Overflow careers.
Management Science, 66(2), 587-604.

Yang, Y., & Shi, M. (2011). Rise and fall of stars:
Investigating the evolution of star status in
professional team sports. International Journal of
Research in Marketing, 28(4), 352-366.

Ye, S., Viswanathan, S., & Hann, I.-H. (2018). The value
of reciprocity in online barter markets: An
empirical investigation. MIS Quarterly, 42(2),
521-549.

Zaheer, S., Albert, S., & Zaheer, A. (1999). Time scales
and organizational theory. Academy of
Management Review, 24(4), 725-741.

Zhang, S., Singh, P. V., & Ghose, A. (2019). A structural
analysis of the role of superstars in crowdsourcing
contests. Information Systems Research, 30(1),
15-33.

286



Journal of the Association for Information Systems

Appendix

Identify unique projects with releases between 2015 and 2019
[1,512,861 projects]

h 4

Keep projects with at least 2 contributors
[498,014 projects]

h

Keep projects with consistent panel
[41,201 projects]

A 4

Keep projects with complete data on DVs, IVs, and control variables
[21,456 projects]

Note: We collected data from GitHub from 2015-2019. First, we identified 1,512,861 unique projects with releases between 2015 and 2019. Second,
we retained 498,014 unique projects that received contributions from at least two contributors. Third, we retained 41,201 projects with at least 4
years of consistent panels. In other words, each project had either 4 or 5 years of panel data beginning either in 2015 or 2016. Finally, we retained
21,456 projects with data on dependent, independent, and control variables. For example, we used project owner information such as account age

and owner type (individual or organizational). We dropped projects where the owner account was deleted or owner information was incomplete or
unavailable.

Figure Al. Random Sample Selection
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Note: This figure shows the inverted U-shaped relationship between the number of star contributors and (a) the quality or (b) the popularity of the
OSS project. In our context of open source software, quality was measured using issues closed for a focal open source software project (artifact).
Similarly, popularity was measured using the number of open source platform users watching the focal project (artifact). From Panel (a), we note
that the number of star contributors contributing to an online open collaboration community artifact is curvilinearly related to the artifact’s quality,
such that a moderate number of star contributors is associated with the highest quality (inverted U-shaped relationship). From Panel (b), we note
that the number of star contributors contributing to an online open collaboration community artifact is curvilinearly related to the artifact’s popularity,
such that a moderate number of star contributors is associated with the highest increase in popularity (inverted U-shaped relationship).

Figure A2. How Does the Number of Star Contributors Affect an Open Source Software Project’s Quality and
Popularity?
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Note: This figure illustrates the moderating effect of the proportion of star contributors’ contributions on the relationship between the number of star
contributors and the (a) quality or (b) popularity of the OSS project. From Panel (a), we note that the relative proportion of star contributors’
contributions moderates the relationship between the number of star contributors and the project’s quality, such that an increase in the relative
proportion of their contributions strengthens the effect on project quality (i.e., the curve is more pronounced). From Panel (b), we note that the
relative proportion of star contributors’ contributions moderates the relationship between the number of star contributors and project popularity,
such that an increase in the relative proportion of their contributions diminishes the effect on project popularity (i.e., the curve flattens). For each
panel, we show three levels (0.1, 0.3, and 0.5) of the proportion of star contributors’ contributions. In our OSS context of open source software,
quality was measured using issues closed for a focal open source software project (artifact). Similarly, popularity was measured using the number
of open source platform users watching the focal project (artifact).

Figure A3. How Does the Relative Proportion of Contributions by Star Contributors Affect the Relationship
Between the Number of Star Contributors and the Open Source Software Project’s Quality and Popularity?
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(a) Quality of OSS project (b) Popularity of OSS project
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Note: This figure illustrates the moderating effect of the OSS project’s environmental dynamism on the relationship between the number of star
contributors and the (a) quality or (b) popularity of the OSS project. From Panel (a), we note that the level of OSS project environmental dynamism
moderates the relationship between the number of star contributors and project quality, such that an increase in the OSS project environmental
dynamism strengthens the effect on project quality (i.e., the curve is more pronounced). From Panel (b), we note that the level of OSS project
environmental dynamism for a project moderates the relationship between the number of star contributors and project popularity, such that an
increase in the OSS project environmental dynamism strengthens the effect on project popularity (i.e., the curve is more pronounced). For each
panel, we show three levels (-3, 3, and 9) of environmental dynamism. In our OSS context of open source software, quality was measured using
issues closed for a focal open source software project (artifact). Similarly, popularity was measured using the number of open source platform users
watching the focal project (artifact).

Figure A4. How Does the Open Source Software Project’s Environmental Dynamism Affect the Relationship
Between the Number of Star Contributors and the Open Source Software Project’s Quality and Popularity?
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Table Al. Results of HLM Estimation With Star Contributors Operationalized as
Contributors Whose Contributions Are 1 Standard Deviation Above the Mean

Variables OSS project quality OSS project popularity
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 14.226%** 13.406%** 16.068*** 25.788%** 26.087%** 35.766%**
(0.666) (0.680) (0.705) (3.325) (3.454) (3.449)
NoOfNonStars 0.128%** 0.132%** 0.115%** 1.657*** 1.673*** 1.691***
(0.003) (0.003) (0.003) (0.019) (0.019) (0.0190
ProjTenure 0.672%* 0.605%* -0.589* -2.650% -3.392%* 6.069%**
(0.219) (0.219) (0.259) (1.286) (1.287) (1.567)
OwnTenure -0.367* -0.175 0.65*** -1.903 -1.799 2.515%
(0.179) (0.179) (0.192) (1.001) (1.001) (1.129)
AveYrCont -0.007*** -0.007*** -0.004*** -0.007** -0.008** -0.002
(0.000) (0.000) (0.000) (0.003) (0.003) (0.003)
TotYrCont 0.004%** 0.004%** 0.003%%** 0.004*** 0.004%** 0.001
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)
OwnType -1.732 -1.878 -1.896 72.800%** 73.152%%* 38.705%**
(1.105) (1.105) (1.204) (5.276) (5.262) (5.834)
ProjDyn 0.132%%* 0.133%** 0.077%** 0.304%** 0.301%** -0.056
(0.016) (0.016) (0.017) (0.078) (0.078) (0.077)
IssOpen 0.689%** 0.687*** 0.741%** 0.137%** 0.113%*** 0.196***
(0.002) (0.002) (0.002) (0.017) (0.018) (0.018)
NoOfStars 2.413%** 2.625%** 0.089 20.444 %+ 19.886%*** 8.246%**
(0.164) (0.199) (0.218) (1.124) (1.357) (1.545)
NoOfStars’ -0.274%%%* -0.282%** -0.01 -0.259%** 0.071 1.132%**
(0.008) (0.010) (0.013) (0.052) (0.072) (0.090)
PropOfStarCont -7.656%** -4.273%%* -11.637* -19.739%**
(0.766) (0.749) (5.367) (5.529)
NoOfStars x PropOfStarCont 11.786%** 11.662%** -15.218* -2.16
(0.868) (0.920) (6.064) (6.607)
NoOfStars? x PropOfStarCont -0.251%%* -0.371%%* 3.420%** -0.106
(0.056) (0.092) (0.387) (0.622)
NoOfStars x ProjTenure 0.967*** -7.268%%*
(0.121) (0.734)
NoOfStars x OwnTenure -0.586%** -4.306%**
(0.076) (0.485)
NoOfStars x OwnType -0.693 33.940%**
(0.393) (2.704)
NoOfStars x ProjDyn 0.323%** 1.077%**
(0.008) (0.051)
NoOfStars® x ProjTenure -0.043%%* 0.250%**
(0.005) (0.026)
NoOfStars®> x OwnTenure 0.063 %% 0.224%x*
(0.004) (0.029)
NoOfStars? x OwnType -0.118%%* -1.775%%%
(0.023) (0.156)
NoOfStars® x ProjDyn -0.043%%% -0.118%%*
(0.001) (0.004)
Deviance (-2 log likelihood) 896784.0 896586.1 889883.3 1218647.3 1218520.0 1216856.6
Deviance difference (A Dev) 197.9%*** 6702.8%** 127.3%** 1663.4%**

in parentheses.

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at Level 2. Deviation differences were calculated
as the difference between the current model and the previous model, i.e., A D2 = D2-D1 and A D5 = D5-D4. The significance of difference was
tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors
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Table A2. Results of HLM Estimation Using Projects with a Minimum of Five Contributors Per Year

Variables OSS project quality OSS project popularity
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 32.984%*** 30.104%** 30.131*** 79.598%** 70.578%** 70.212%**
(1.694) (1.756) (1.788) (8.268) (8.771) (8.821)
NoOfNonStars 0.150%** 0.157%** 0.185%** 1.629%** 1.629%** 1.823%**
(0.004) (0.004) (0.005) (0.029) (0.029) (0.031)
ProjTenure 2.124%** 1.703%* 1.520% -3.678 -5.368 8.748*
(0.558) (0.559) (0.633) (3.190) (3.196) (3.729)
OwnTenure -1.136* -0.456 -0.309 -5.960* -5.268* -6.597*
(0.464) (0.466) (0.490) (2.559) (2.562) (2.758)
AveYrCont 0.271%%* 0.272%%* 0.275%%* -0.358%*%* -0.340%** -0.223%*
(0.012) (0.012) (0.012) (0.084) (0.084) (0.083)
TotYrCont 0.006*** 0.005%** 0.004*** 0.004*%** 0.005%**%* 0.002
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)
OwnType -9.077** -10.373%** -11.173%** 123.371%%* 121.859%%** 89.071%**
(2.860) (2.859) (3.033) (13.686) (13.650) (14.796)
ProjDyn 0.953%%** 0.953%%** 0.643%%* 2.049%%** 1.990%** 1.163%*%*
(0.079) (0.079) (0.084) (0.377) (0.375) (0.413)
IssOpen 0.623%** 0.618*** 0.633%%* 0.179%** 0.159%%*%* 0.135%**
(0.004) (0.004) (0.004) (0.029) (0.029) (0.030)
NoOfStars 9.076*** 10.612%** 8.441%** 66.889%*** 83.376%** 81.255%**
(0.628) (1.026) (1.068) (4.101) (6.540) (6.873)
NoOfStars’ -1.602%%* -1.655%%* -1.013%%* -3.656%%* -3.980%*%*%* -5.334%%*
(0.094) (0.131) (0.142) (0.621) (0.848) (0.933)
PropOfStarCont -29.430%** -33.865%%* -54.975%%* -100.444%**
(3.172) (3.302) (20.698) (21.719)
NoOfStars x PropOfStarCont 42.225%%* 59.107*** -23.652 -6.12
(4.159) (4.535) (27.451) (30.206)
NoOfStars? x PropOfStarCont -0.075 -6.090%*** 14.938%** 16.248**
(0.678) (0.928) (4.484) (6.233)
NoOfStars x ProjTenure 0.312 -15.431%**
(0.464) (3.116)
NoOfStars x OwnTenure 0.059 -1.967
(0.284) (1.892)
NoOfStars x OwnType 3.152% 47.664%***
(1.524) (10.191)
NoOfStars x ProjDyn 0.649%%** 1.594%%*
(0.035) (0.233)
NoOfStars® x ProjTenure -0.003 -1.289%:#*
(0.051) (0.342)
NoOfStars®> x OwnTenure -0.133%* -1.073%%*
(0.041) (0.274)
NoOfStars®> x OwnType -1.842%%** 3.917
(0.337) (2.266)
NoOfStars® x ProjDyn -0.185%%** -0.454%%%
(0.008) (0.051)
Deviance 378861.2 378639.0 378008.8 502809.0 502761.3 502309.5
(-2 log likelihood)
Deviance difference 222 2%** 630.2%% 47 7% 451 g
(A Dev)

Note: There are 33,924 observations at the periodic level that correspond with 7,706 projects at Level 2. Deviation differences were calculated
as the difference between the current model and the previous model, i.e., A D2 = D2-D1 and A D5 = D5-D4. The significance of difference was
tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors

in parentheses.
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Table A3. Results of HLM Estimation Using the Number of Issues Open and Fork Events as
Alternative Measures for OSS Product Quality and Popularity, Respectively

Project quality measure as issues open

Project popularity as fork event

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 12.598 *** 10.318 *** 9.595 *** 12.917%%* 10.498%** 11.758%**
(0.637) (0.641) (0.615) (0.933) (0.944) (0.964)
NoOfNonStars 0.381 *** 0.378 *** 0.346 *** 0.601*** 0.604*** 0.589%**
(0.004) (0.004) (0.004) (0.005) (0.005) (0.005)
ProjTenure -1.454 *** -2.014 *** 0.226 -0.284 -0.804* -0.603
(0.277) (0.273) (0.286) (0.356) (0.355) 0.377)
OwnTenure -1.094 *** -0.833 #** -0.892 *** -0.206 0.092 0.849**
(0.212) (0.208) (0.208) (0.285) (0.284) (0.292)
AveYrCont -0.031 *** -0.030 *** -0.032 *** -0.009*** -0.009%** -0.008***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
TotYrCont 0.019 *** 0.018 *** 0.019 *** 0.005*** 0.005%** 0.004***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
OwnType -2.342 * -2.910 ** -1.876 5.197** 4.273%* 2.452
(1.085) (1.060) (1.057) (1.603) (1.586) (1.661)
ProjDyn 0.127 *** 0.119 *** 0.105 *** 0.064** 0.057* 0.041
(0.016) (0.016) (0.015) (0.024) (0.024) (0.024)
IssOpen -0.024*** -0.037%** -0.020%**
(0.004) (0.004) (0.004)
NoOfStars 21.064 *** 29.338 *** 38.105 *** 17.957%** 25.986%** 19.393%**
(0.513) (0.802) (0.841) (0.593) (0.991) (1.043)
NoOfStars’ 1.703 *** 2.093 *** 0.079 -1.702%** -1.637%** -0.185
(0.090) (0.115) (0.128) (0.103) (0.137) (0.152)
PropOfStarCont -34.302 *** -27.667 *** -35.498*** | -33.7754%**
(2.508) (2.542) (3.012) (3.109)
NoOfStars x PropOfStarCont -20.922 #** -68.830 *** 1.137 0.281
(3.493) (3.762) (4.082) (4.422)
NoOfStars’ xPropOfStarCont 18.439 *** 32.513 *** 10.994*** 11.197***
(0.619) (0.854) (0.720) (0.989)
NoOfStars x ProjTenure -5.891] *x* -1.071*
(0.373) (0.425)
NoOfStars x OwnTenure -1.103 *** -5.114%%%*
(0.233) (0.270)
NoOfStars x OwnType 1.499 4.022%*
(1.203) (1.402)
NoOfStars x ProjDyn -0.470 *** 0.388***
(0.028) (0.034)
NoOfStars® x ProjTenure -0.283 #ik 0.402%*x*
(0.048) (0.054)
NoOfStars®> x OwnTenure -0.066 1.464%*x*
(0.039) (0.044)
NoOfStars? x OwnType 2,135 2.193%xx*
(0.317) (0.361)
NoOfStars® x ProjDyn 0.290 *#* -0.144%%*
(0.007) (0.008)
Deviance (-2 log likelihood) | 957056.1 954948.6 951035.4 988004.8 987176.0 985566.6
Deviance difference (A Dev) 2107.5%** 3913.2%** 828.8%** 1609.4%**

parentheses.

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at Level 2. Deviation differences were calculated as|
the difference between the current model and the previous model, i.e., A D2 = D2-D1 and A D5 = D5-D4. The significance of difference was tested
after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors in
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Table A4. Results for Estimation of Random Effects with Endogeneity Correction

Star Contributors in Online Collaboration Communities

OSS Project quality OSS project popularity
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) -0.753 *** -1.017 *** S1.313 **% | _13.569 *** | -13.537 *** -8.434 **
(0.149) (0.152) (0.156) (2.617) (2.628) (2.612)
AveNoOfNonStars 0.138 *%** 0.142 *** 0.129 *%** -0.465 *** -0.452 *** -0.371 ***
(0.004) (0.004) (0.004) (0.053) (0.053) (0.053)
ProjTenure 0.285 ** 0.404 *** 0.304 ** -2.859 * -2.507 * -0.050
(0.103) (0.104) (0.116) (1.128) (1.131) (1.217)
OwnTenure -0.007 0.019 0.007 -1.246 -1.193 -0.255
(0.052) (0.052) (0.059) (0.837) (0.838) (0.865)
AveYrCont 0.002 *** 0.002 *** 0.003 *%** -0.028 *** -0.028 *** -0.028 ***
(0.000) (0.000) (0.000) (0.007) (0.007) (0.006)
AveTotYrCont 0.001 *%** 0.001 *** 0.000 *** 0.011 *** 0.011 *%** 0.010 ***
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)
OwnType 0.376 0.207 0.384 66.937 *#** 66.547 *** 42,548 ***
(0.233) (0.234) (0.269) (4.152) (4.162) (4.311)
ProjDyn 0.012 ** 0.012 ** -0.001 -0.027 -0.027 -0.099
(0.004) (0.004) (0.004) (0.065) (0.065) (0.066)
AvelssOpen -0.183 *** -0.186 *** -0.173 *** 1 0.086 0.085 0.024
(0.004) (0.004) (0.004) (0.052) (0.052) (0.052)
NoOfNonStars -0.002 0.001 0.036 *** 2.213 *** 2.214 *** 2.345 #**
(0.003) (0.003) (0.003) (0.050) (0.050) (0.050)
YrCont -0.009 *** -0.008 *** -0.008 *** | (.023 *** 0.023 *** 0.027 ***
(0.000) (0.000) (0.000) (0.006) (0.006) (0.006)
TotYrCont 0.003 *** 0.003 *** 0.003 *%** -0.008 *** -0.008 *** -0.009 ***
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)
IssOpen 0.873 *** 0.873 *** 0.872 *** 0.073 0.071 0.120 *
(0.003) (0.003) (0.003) (0.049) (0.049) (0.049)
AveNoOfStars -3.956 *** 0.014 -0.892 2.287 22.039 ** -1.004
(0.456) (0.701) (0.703) (6.009) (7.294) (7.304)
AveNoOfStars* 0.864 *** 0.503 *%** 0.019 34.669 *** 33.028 *** 33.706 ***
(0.084) (0.095) (0.096) (1.166) (1.223) (1.222)
AvePropOfStarCont -25.331 -23.595 -685.602 * -566.305
(20.895) (20.712) (321.073) (316.380)
NoOfStars 3.384 #** 22,176 *** -3.211 *%% | 49749 *** 29.355 *** 19.873 ***
(0.342) (0.619) (0.626) (2.438) (4.555) (4.695)
NoOfStars* -1.940 *** -1.368 *** -0.750 *** | .9 595 *** -7.780 *** -8.834 ***
(0.059) (0.078) (0.083) (0.419) (0.584) (0.640)
PropOfStarCont 1.016 -1.959 37.003 ** -23.013
(1.492) (1.508) (12.655) (13.092)
NoOfStars x PropOfStarCont 15.042 *** | 25501 *** 7917 25.750
(1.623) (1.754) (15.800) (17.083)
NoOfStars’ xPropOfStarCont -1.869 *** -1.601 *** 3.256 8.700 *
(0.317) (0.456) (2.825) (3.864)
NoOfStars x ProjTenure 0.568 ** -3.266 *
(0.198) (1.649)
NoOfStars x OwnTenure -0.003 -3.148 **
(0.104) (1.020)
NoOfStars x OwnType -1.265 * 70.444 ***
(0.540) (5.312)
NoOfStars x ProjDyn 0.369 *** 1.307 ***
(0.011) (0.124)
NoOfStars? x ProjTenure -0.161 *** -2.626 ***
(0.027) (0.212)
NoOfStars* x OwnTenure 0.082 *** -1.400 ***
(0.018) (0.170)
NoOfStars* x OwnType 0.042 6.905 **%*
(0.169) (1.415)
NoOfStars’ x ProjDyn -0.162 *** -0.522 ***
(0.004) (0.032)
Deviance (-2 log likelihood) 827751.1 827344.9 825088.3 1207061.5 1207023.4 1205346.8
Deviance difference (A Dev) 406.2%** 2256.6%** 38.1%** 1676.6%**

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at Level 2. Deviation differences were calculated
as the difference between the current model and the previous model, i.e., A D2 = D2-D1 and A D5 = D5-D4. The significance of difference was
tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors

in parentheses.
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Table AS. Results of Falsification Test

Project quality Project popularity
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 12.057 *** 8.006 *** 7.674 *** 39.153 #*x* 26.706 *** 26.102 ***
(0.631) (0.640) (0.644) (2.968) (3.028) (3.011)
NoOfNonStars 0.196 *** 0.191 *** 0.215 *%** 0.069 *** 0.041 0.097 ***
(0.005) (0.005) (0.005) (0.021) (0.021) (0.022)
ProjTenure 0.156 -0.427 1.391 *%** 1.234 -0.431 -0.141
(0.301) (0.298) (0.324) (1.320) (1.315) (1.417)
OwnTenure -1.169 *** -0.919 *** -0.972 *** -2.163 * -1.502 -1.305
(0.219) (0.215) (0.226) (0.999) (0.991) (1.025)
AveYrCont 0.001 0.001 0.002 ** 0.016 *** 0.015 *** 0.015 ***
(0.001) (0.001) (0.001) (0.003) (0.003) (0.003)
TotYrCont -0.001 ** -0.000 * -0.001 *** -0.008 *** -0.008 *** -0.008 ***
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)
OwnType -1.785 -3.356 ** -1.932 68.678 *** 63.716 *** 50.966 ***
(1.067) (1.044) (1.108) (5.050) (4.993) (5.176)
ProjDyn 0.124 *** 0.112 **%* 0.045 ** 0.280 *** 0.244 ** 0.195 **
(0.016) (0.016) (0.016) (0.075) (0.074) (0.075)
IssOpen -0.170 *** -0.170 *** -0.171 *** -0.214 *** -0.202 *** -(0.234 ***
(0.005) (0.005) (0.005) (0.019) (0.019) (0.020)
NoOfStars 14.320 *** 31.144 *** 31.943 #** 16.756 *** 71.618 *** 71.792 ***
(0.599) (0.890) (0.968) (2.488) (3.879) (4.173)
NoOfStars’ 0.145 -1.163 *** -0.316 * 14.641 *** 9.622 *** 9.794 *%**
(0.106) (0.132) (0.152) (0.437) (0.560) (0.639)
PropOfStarCont -55.112 *%** -49.381 *** -155.155 ##* | -192,5209 ***
(2.872) (2.955) (12.201) (12.628)
NoOfStars x PropOfStarCont 12.359 ** -9.859 * 42.128 * 52.775 **
(4.093) (4.478) (17.076) (18.767)
NoOfStars’® xPropOfStarCont -0.138 5.509 *** -12.850 *** | -16.145 ***
(0.739) (1.042) (3.052) (4.306)
NoOfStars x ProjTenure -5.308 *** -0.630
(0.451) (1.859)
NoOfStars x OwnTenure -1.584 *** 1.948
(0.277) (1.159)
NoOfStars x OwnType 0.288 68.722 ***
(1.432) (5.990)
NoOfStars x ProjDyn 0.815 *** 0.177
(0.033) (0.142)
NoOfStars® x ProjTenure -0.216 *#* -0.445
(0.058) (0.239)
NoOfStars®> x OwnTenure 0.680 *** -2.003 ok
(0.046) (0.192)
NoOfStars®> x OwnType -3.135 ok -24.275 ok
(0.384) (1.582)
NoOfStars® x ProjDyn -0.183 ek 0.048
(0.009) (0.035)
Deviance 981330.9 980602.2 979380.1 1229920.0 | 1229592.6 | 12291282
(-2 log likelihood)
Deviance difference 728745 12221 %%+ 327 4% 464 455
(A Dev)

errors in parentheses.

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at Level 2. Deviation differences were calculated
as the difference between the current model and the previous model, i.e., A D2 = D2-D1 and A D5 = D5-D4. The significance of difference was
tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard
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