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Abstract 

Online collaboration communities (OCCs) enable geographically distributed individuals, groups, and 

organizations to self-organize and contribute to community-owned artifacts. The significance of these 

artifacts has been underscored by recent advancements in large language models, which leverage 

community content for training sophisticated models across diverse domains, including productivity, 

healthcare, and education. This study investigates star contributors—individuals making 

disproportionately large contributions to focal OCC artifacts. Drawing on theories of collective action 

and strategic interactions, we hypothesize a curvilinear relationship between star contributors’ 

contributions and both artifact quality and popularity. Utilizing data from over 21,000 open-source 

software projects between 2015 and 2019, we find: (1) an inverted U-shaped relationship between the 

number of star contributors and artifact quality, (2) an inverted U-shaped relationship between the 

number of star contributors and artifact popularity, (3) that a higher proportion of star contributors’ 

contributions enhances artifact quality but not popularity, and (4) that environmental dynamism 

moderates the relationship between the number of star contributors and both artifact quality and 

popularity. This research advances the conceptualization of star contributors, offering a more nuanced 

understanding aligned with the fluid boundaries of OCCs compared to traditional core-periphery 

models. A key implication is that while star contributors positively impact artifact quality and 

popularity, an excessive proportion of their contributions negatively affects artifact quality. 

Keywords: Online Collaboration Communities, Peer Production, Core, Periphery, Star 

Contributors, Hierarchical Linear Modeling, Open Source Software 

Giri Tayi was the accepting senior editor. This research article was submitted on December 01, 2023, and underwent 

three revisions. 

1 Introduction 

Online collaboration communities (OCCs) enable 

geographically distributed individuals, groups, and 

organizations to self-organize and openly contribute 

towards a common goal, unbound by the contractual 

obligations typical of traditional organizations. OCCs 

are prevalent across different domains, including open-

source software development (e.g., GitHub), knowledge 

management (e.g., Wikipedia), social networking (e.g., 

Reddit), and question-and-answer platforms (e.g., Stack 

Overflow, Quora), where they facilitate the creation of 

shared artifacts (Forte & Lampe, 2013). OCCs also have 

significant economic and generative implications, as 

evidenced by Microsoft’s acquisition of GitHub for $7.5 

billion in 2018 and the utilization of OCC-generated 

data in the development of recent large language models 

such as ChatGPT and Google Bard (Brown et al., 2020). 

The sustenance and success of an OCC depend on 

contributions from a diverse group of non-contracted 

individual contributors (Butler, 2001; Chengalur-
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Smith et al., 2010; Mindel et al., 2018). Prior research 

has explored several factors that influence contribution 

to OCCs, such as intrinsic and extrinsic motivation 

factors (Wasko & Faraj, 2005; Wasko et al., 2009), 

quality and deficiency signals emitted by the artifact 

(Setia et al., 2020), and economic and health-related 

shocks (Kummer et al., 2020; Malgonde et al., 2023). 

A common theme in this body of work is the 

classification of contributors based on access rights 

(Lin & Chen, 2018; Lin & Wang, 2020; Setia et al., 

2012): core contributors, who own artifacts, hold 

power over design decisions, and/or manage processes 

related to the artifact, and peripheral contributors, 

whose contributions are evaluated by core members 

before assimilation. 

However, this traditional conceptualization of core and 

peripheral contributors presents four major limitations 

in the context of OCCs. First, empirical evidence 

suggests that contributors without core status may make 

disproportionately large contributions to an artifact 

(Kuk, 2006; Mindel et al., 2018). Second, OCC artifacts 

are characterized by fluidity, with a constant inflow and 

outflow of resources such as skills and ideas. 

Consequently, a contributor’s level of contribution may 

vary significantly over the artifact’s lifespan (Faraj et al., 

2016). Third, a contributor’s activity across the platform 

may differ from their contribution behavior to a specific 

artifact; for example, a contributor might only 

participate in discussions related to Python 

programming. Finally, as contributors increase their 

level of contribution, they gain influence, resulting in 

the development of lateral authority (Dahlander & 

O’Mahony, 2011) due to the flat hierarchical structures 

prevalent in OCCs. 

These limitations highlight the need for a more nuanced 

understanding of contributor roles in OCCs. Rullani and 

Haefliger (2013) suggest that, unlike the core-periphery 

distinction based on access rights, a categorization based 

on contributions provides a clearer differentiation. In 

response to the limitations of the traditional core-

periphery model, we conceptualize1 star contributors as 

individual contributors making a disproportionate 

number of recent contributions to a focal OCC artifact, 

relative to the average contributor. This approach allows 

us to identify contributors whose presence can 

significantly impact key outcomes in collaborative work 

settings (Call et al., 2021; Taylor & Bendickson, 2021). 

The concept of “stars” has gained traction within 

information systems research (Bockstedt et al., 2022; 

Foerderer et al., 2023), primarily in the context of non-

collaborative online communities such as innovation 

contest platforms, with a focus on platform-wide 

identification of star contributors.  

 
1  Our conceptualization of star contributors aligns with prior 

conceptualization of core-periphery contributors, where star 

This paper investigates three related but distinct 

questions: (1) How do the number of star contributors 

impact OCC artifact quality and popularity? (2) How 

does the relative proportion of star contributors’ 

contributions impact OCC artifact quality and 

popularity? (3) How does the environmental dynamism, 

defined as the rate of change in the OCC content, 

moderate the effect of star contributors on OCC 

artifacts’ quality and popularity?  

These questions are important and timely for three 

reasons. First, OCCs are crucial for knowledge 

management, enabling organizations to incorporate 

diverse perspectives and facilitate open innovation 

(Ahuja, 2000; Kankanhalli et al., 2017). However, the 

fluidity of OCCs, characterized by the constant inflow 

and outflow of resources such as contributors’ skills 

(Faraj et al., 2011), necessitates an understanding of how 

different categories of contributors, particularly star 

contributors, influence artifact success. Second, prior 

work has documented unequitable participation in 

OCCs (Mindel et al., 2018). For example, Kuk (2006, p. 

1031) observed that “much of the OSS development is 

realized by a small percentage of individuals despite the 

fact that there are tens of thousands of developers 

available.” This highlights the need for managerial 

guidance on the role of star contributors in the success 

of OCC artifacts. Finally, we analyze the impact of star 

contributors on two key measures of OCC artifact 

success from the literature: (1) quality, which entails 

making improvements to the artifact such as fixing 

defects (Jarczyk et al., 2018; Setia et al., 2012), and (2) 

popularity (Weng & Soh, 2023), which reflects the level 

of platform users’ interest in the artifact. These measures 

are important indicators of the technical, social, 

sustenance, generativity, and use of OCC artifacts 

(Butler, 2001; Chengalur-Smith et al., 2010; Mindel et 

al., 2018; Setia et al., 2020).  

OCC artifact quality refers to the evolving state of the 

artifact and is measured by the number of outstanding 

errors, issues, edits, and fixes to issues raised by the 

community. In OCCs, community members contribute to 

identifying quality-related issues and/or provide 

contributions to address quality-related issues. OCC 

artifact popularity is the artifact’s status within the OCC 

and is measured based on the number of community 

members interested in the artifact. Interest may be 

measured along multiple dimensions, such as contribution, 

tracking (community members track the progress and 

activities related to the artifact), and marketing (the artifact 

is highly discussed within the community).  

To investigate the role of star contributors in OCC artifact 

success, we analyzed longitudinal data from GitHub, a 

popular open source software platform, spanning the 

period between 2015 and 2019. Our results suggest (1) a 

contributors align with core and non-star contributors align with 

peripheral contributors. 
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curvilinear (inverted U-shaped) relationship between the 

number of star contributors and OCC artifact quality, (2) a 

curvilinear (inverted U-shaped) relationship between the 

number of star contributors and OCC artifact popularity, 

and (3) a moderating effect by the relative proportion of star 

contributors’ contributions and the level of environmental 

dynamism in an OCC artifact development. 

This study makes two major contributions. First, it 

advances a novel conceptualization of star contributors 

in OCCs that addresses the rigidity of the extant 

conceptualization of core-periphery. Specifically, unlike 

the core-periphery distinction using access rights, our 

contributions-based categorization provides a “clear 

core-periphery distinction” (Rullani & Haefliger, 2013, 

p. 942) by internalizing the fluid characteristic of OCCs. 

Further, whereas the core-periphery approach generally 

assumes a fixed proportion (usually based on the 80-20 

rule) of contribution between core and peripheral 

contributors, our approach relaxes this assumption and 

considers a more dynamic proportion of contribution for 

star and non-star contributors. Second, while existing 

literature has examined the impact of peripheral 

contributors (Setia et al., 2012), emphasized the role of 

core contributors (Colazo & Fang, 2010; Jiang et al., 

2019; Moqri et al., 2018), and acknowledged the general 

importance of contributions to OCC sustenance (Butler, 

2001; Chengalur-Smith et al., 2010; Mindel et al., 

2018), this study specifically addresses the gap in 

understanding the effect of star contributors’ 

contributions on OCC artifact quality and popularity. 

Notably, this is one of the first studies to examine the 

role of star contributors in the context of OCCs, a non-

traditional organizational form. 

2 Theoretical Background 

Three areas of research are relevant to our study: (1) 

online collaboration communities, (2) categories of 

contributors to OCCs, and (3) star performers in 

collaborative work.  

2.1 Online Collaboration Communities 

Online collaboration communities are communities of 

innovation (Safadi et al., 2021) where geographically 

distributed individuals (contributors) coordinate and 

collaborate to create artifacts—such as products or 

services—of economic and social value that are often 

freely available for consumption. OCCs span multiple 

domains, including open source software, question-and-

answer, and knowledge systems, among others. The 

success and sustenance of OCCs are dependent on 

member contributions (Butler, 2001; Chengalur-Smith 

et al., 2010; Mindel et al., 2018), which can take various 

forms depending on the nature, goals, and protocols of 

the OCC. For instance, edits, comments, and commits to 

open source software projects are considered 

contributions (Daniel et al., 2013; Kummer et al., 2020; 

Malgonde et al., 2023; Setia et al., 2020; Setia et al., 

2012), whereas asking or responding to a question is 

considered a contribution in question-and-answer OCCs 

(Safadi et al., 2021; Xu et al., 2020). Furthermore, the 

notion of artifact changes with the OCC domain (Kane 

& Ransbotham, 2016; Levine & Prietula, 2014). For 

example, in a question-and-answer OCC, the artifact 

typically comprises the comments and answers 

associated with a focal question (Safadi et al., 2021), 

while in open source software, the artifact represents the 

focal project along with its associated issues, code 

commits, and comments (Malgonde et al., 2023). 

Much of the research on OCCs has examined why 

contributors contribute and the effect of their 

contributions on OCC outcomes. Studies investigating 

contribution behavior highlight consumption and 

motivation as key factors (Kane & Ransbotham, 2016; 

Lakhani & Von Hippel, 2003). Kane and Ransbotham 

(2016) describe a recursive relationship where 

individuals first consume the artifact, identify a gap 

following consumption, and then contribute to address 

that gap. Contributors may be driven by intrinsic 

motivations, such as gaining a sense of community, 

deriving satisfaction from their passion for the OCC, or 

experiencing joy from working on its challenges 

(Lakhani & Von Hippel, 2003). Extrinsic motivations 

also play a role; contributors may seek favorable 

outcomes such as enhanced status and reputation within 

the community (Levina & Arriaga, 2014) or offline 

gains in the labor market (Huang & Zhang, 2016; Xu et 

al., 2020). Beyond intrinsic and extrinsic motivations, 

prior work identifies external factors, such as 

unemployment or health-related shocks, that affect 

contribution dynamics (Kummer et al., 2020; Malgonde 

et al., 2023). Research examining OCC outcomes has 

considered various technical and social outcomes for 

artifacts, such as take-off (Setia et al., 2020), copies for 

consumption (Jiang et al., 2017), artifact quality (Setia 

et al., 2012), and popularity (Weng & Soh, 2023). 

Finally, prior work has recognized the influence of the 

environmental dynamism of OCC artifacts on outcomes 

(Jones et al., 2004; Levina & Arriaga, 2014). 

Environmental dynamism refers to the extent to which 

an artifact’s development necessitates rapid and 

continuous updates. OCC artifacts exhibiting high 

environmental dynamism require consistent and rapid 

contributions to meet the need for frequent updates 

(Baskerville et al., 2003). For example, operating 

systems and web browsers’ need for software patches on 

security vulnerabilities, and fast-paced policy-related 

discussions on the use of generative technology on Stack 

Overflow (Overflow, 2023). Conversely, OCC artifacts 

with low environmental dynamism are characterized by 

slower evolution, prioritizing organic stability over 

rapid changes. Examples include embedded systems 

software (e.g., in devices and appliances) and firmware. 

Table 1 summarizes key studies from prior work.
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Table 1. Related Work 

Paper OCC 

context 

Key variables Contributors’ 

classification 

Star contributor 

conceptualization 

Key findings 

Lin 

and 

Wang 

(2020) 

Online 

encyclopedia 

(Wikipedia) 

• Article quality 

• Number of core 

members 

• Content revised 

by occasional 

participants 

• Core member 

(cumulative 

edits above 80% 

across platform) 

• Occasional 

participants 

• Based on 

contribution 

frequency 

(cumulative 

edits above 80% 

across platform) 

• Static 

classification 

• Contributions by core 

participants positively impact 

article quality. 

Safadi 

et al. 

(2021) 

Technical 

question and 

Answer 

platform 

(Stack 

Overflow) 

• Valued 

knowledge 

contributions  

• Social 

embeddedness 

• Epistemic 

marginality 

• Embedded 

contributors 

(central to 

community 

network) 

• Marginal 

contributors 

(peripheral in the 

community 

network) 

• Based on 

location within 

the community 

network 

• Dynamic 

classification 

• High socially embedded and 

epistemically marginal 

participants contribute valued 

knowledge. 

• Among epistemically marginal 

participants, socially embedded 

participants provide highly 

valued knowledge 

contributions. 

Setia 

et al. 

(2012) 

Open source 

software 

(Source 

Forge) 

• Open source 

software product 

quality and 

product diffusion 

• Participation of 

peripheral 

developers and 

open source 

software product 

maturity 

• Core developers 

(retain control 

and authority 

over key aspects 

of development) 

• Peripheral 

developers 

(volunteer 

contributors 

without 

hierarchical or 

contractual 

controls) 

• Based on 

control and 

authority over 

key aspects of 

development 

• Dynamic 

classification 

 

• Peripheral contributors 

positively contribute to 

products’ quality and diffusion, 

especially in OSS products that 

are at the mature stage. 

This 

paper 

Open source 

software 

(GitHub) 

• Quality and 

popularity of 

OCC artifact 

• Number of star 

contributors  

• Relative 

proportion of star 

contributions 

• OCC artifact’s 

environmental 

dynamism  

• Star contributors 

(disproportionate 

contributions to 

an OCC artifact) 

• Based on 

disproportionate 

contribution 

frequency  

• Recency of 

contributions 

• Dynamic 

classification 

• Inverted U-shaped relationship 

between the number of star 

contributors and OCC artifact’s 

quality and popularity 

• Relative proportion of star 

contributors’ contributions 

moderate the relationship 

between the number of star 

contributors and the artifact’s 

quality and popularity 

Note: This table illustrates the key differences of this study in comparison to selected studies from the literature and does not provide an 

exhaustive list of related work. 

2.2 Categories of Contributors 

Research on OCCs has identified core and periphery 

contributors as the broad set of contributors based on 

access rights (Rullani & Haefliger, 2013). First, core 

contributors possess the authority to edit, maintain, 

design, lead, and evaluate others’ contributions to the 

OCC artifact. Examples include project owners in open 

source projects, Wikipedia page administrators, Listserv 

owners, and administrators in Usenet. Related 

conceptualizations of core contributors have considered 

their position in the OCC network (Daniel et al., 2013; 

Safadi et al., 2021) and their level of contribution (Daniel 

et al., 2013; Lin & Wang, 2020; Setia et al., 2012). 

Second, peripheral contributors make limited 

contributions, typically localized in scope, size, and 

quantity. For example, Setia et al. (2012) operationalized 

peripheral contributors as those contributing “between 

0% to 12% percent of the total code contributions” 

(p.149). Dahlander and O’Mahony (2011) suggested a 

dynamic transition, where increased contributions can 

elevate a peripheral contributor to the core, granting them 

greater influence over the OCC artifact.  
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In the context of open source software (empirical 

context for our study), the distinction between core and 

peripheral contributors is particularly evident in code 

and communication channels. Core contributors have 

direct access to modify the project’s codebase, while 

peripheral contributors’ code changes require core 

member approval. However, communication channels, 

such as comments and issue reporting, are generally 

more accessible. Therefore, “a joint analysis of [code 

and communication] channels can thus lead to the 

identification of a clear core-periphery distinction” 

(Rullani & Haefliger, 2013, p. 942). 

2.3 Conceptualizations of Star 

Contributors 

Star contributors have been conceptualized in 

traditional organizational settings, such as teams, and 

platform-based settings, such as contests. In traditional 

organizational studies, conceptualizations of stars 

have focused on high-performing, visible team 

members with status and significant social capital (Call 

et al., 2021), effective boundary spanners who 

assimilate tacit knowledge (Hess & Rothaermel, 

2011), or highly productive and visible individuals 

(Groysberg et al., 2008, 2011). However, these 

conceptualizations have limited applicability to OCC 

context due to their non-collaborative contexts.  

In platform-based settings, stars are often identified as 

top-ranked contestants (Bockstedt et al., 2022; Zhang 

et al., 2019) or contributors with significantly higher 

demand than their peers (Foerderer et al., 2023). 

However, these conceptualizations have limited 

applicability to OCCs because they primarily (1) focus 

on non-collaborative contexts (i.e., contributors 

compete rather than collaborate), and (2) take a 

platform-wide (i.e., use global ranking) notion of stars. 

Studies related to the OCC context have also 

considered the notion of star contributors. For 

example, Lin and Wang (2020) conceptualized core 

members as those who are “frequently involved in the 

editing of the article” (p. 329) and occasional members 

as those who “occasionally participate in editing work” 

(p. 329). However, this frequency-based approach 

(e.g., classifying contributors accounting for 80% of 

cumulative contributions as stars) has limitations. 

Consider three contributors, A, B, and C, with the 

following contribution patterns over 10 periods: User 

A contributes regularly (e.g., 20 edits weekly for the 

first five weeks), totaling 100 contributions; User B 

contributes intermittently (e.g., 100 contributions in 

week 1, 150 in week 2, and none thereafter), totaling 

250 contributions; and User C contributes consistently 

(e.g., 8 edits weekly), totaling 80 contributions. The 

respective contribution shares are 23.2%, 58.1%, and 

18.6%. Applying the 80% threshold as used in Lin and 

Wang (2020), both Users A and B are classified as core 

contributors. This approach, however, presents two 

issues: (1) it fails to distinguish between Users A and 

C, despite their comparable contributions, and (2) it 

disregards the recency of contributions, overlooking 

User C’s consistent engagement over all periods, 

unlike User A’s limited, early contributions. In 

dynamic OCCs that evolve over extended periods, a 

static, threshold-based approach can misidentify star 

contributors. 

Beyond comparability and recency issues, the 80% 

threshold implies: (1) the presence of core and 

occasional contributors in every project, as 

contributions are always ranked, with the top 80% 

deemed core, and (2) a constant 80% contribution 

share for core contributors. Our conceptualization 

departs from these along two dimensions: (1) It 

accounts for scenarios with no star contributors (i.e., 

when contributions are comparable), and (2) it 

recognizes varying star contribution proportions. For 

example, Contributors A, B, and C with 6, 2, and 2 

contributions, respectively, are classified by Lin and 

Wang (2020) as having two core contributors (A and 

either B or C) to meet the 80% threshold. Our approach 

identifies User A as the sole star contributor, 

accounting for 60% of contributions.  

Table 2 summarizes prior conceptualizations of star 

contributors in the OCC context. Our contribution-

based conceptualization aims to address these 

limitations by (1) moving beyond the rigid core-

periphery classification, (2) accounting for the recency 

of contributions, and (3) accounting for the 

comparability of contributions.  

2.4 Performance Outcomes Associated 

With Star Performers in Collaborative 

Work 

Research on star performers has yielded mixed results, 

demonstrating both positive (Grigoriou & Rothaermel, 

2014; Rothaermel & Hess, 2007) and negative 

(Groysberg et al., 2008) impacts. While star performers 

can enhance innovation output and facilitate knowledge 

transfer among peers (Burke et al., 2007; Grigoriou & 

Rothaermel, 2014; Rothaermel & Hess, 2007), they 

have also been linked to decreased firm value and 

diminished team effectiveness (Groysberg et al., 2008; 

Groysberg et al., 2011; Lam et al., 2011). More recent 

studies have explored nonlinear effects, revealing 

nuanced impacts on team and peer performance (Call et 

al., 2021; Taylor & Bendickson, 2021). However, this 

body of research primarily focuses on traditional 

organizational settings, which differ significantly from 

open collaborative communities (OCCs) where formal 

employment contracts are rare.  
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Table 2. Conceptualizations of Star Contributors in Online Collaboration Communities 

Label Conceptual definition OCC context and example Related papers 

Core versus 

periphery 

Core members are contributors 

who are officially listed as core 

members of the artifact. 

Context: open source software, question 

and answer 

Example: Creator of an open source 

software project 

Dahlander & Frederiksen 

(2012); Setia et al. (2012); 

Rullani and Haefliger 

(2013); 

Embedded 

versus 

peripheral 

Using a network of 

contributors, core embedded 

members are central nodes. 

Context: open source software, online 

encyclopedia 

Example: A node with a high centrality 

score in a network of contributors across 

OSS projects 

Ahuja (2000); Wasko & 

Faraj (2005); Grewal et al. 

(2006); Feller et al. (2008); 

Singh et al. (2011); Peng 

(2019); Safadi et al. (2021) 

Star versus 

non-star (at the 

platform level) 

Disproportionately large 

contributions across all 

contributors. 

Context: online encyclopedia 

Example: Contributors who account for 

first 80% of the cumulative contributions 

after sorting contributors in a descending 

order 

Lin & Wang (2020) 

Star versus 

non-star (at the 

artifact, 

community, or 

platform level) 

Recency and disproportionality 

of contributions across the set 

of contributors in a period. 

Context: open source software 

Example: Contributors who account for a 

disproportionate (e.g., more than 3 times 

the average contributor) size of 

contributions in a period. 

This paper 

Note: This table classifies prior conceptualizations of star contributors in OCC contexts. Also, this table provides a conceptualization of related 
concepts such as core contributors and embedded contributors that refers to central contributors (e.g., decisions related to project direction) to 

the focal OCC artifact. Studies in contexts characterized by non-collaborative artifact development, organizational setting, and/or adopting a 

platform-level conceptualization of stars are not considered due to their misalignment with the OCC context. 

In their review of the literature on star performers, Asgari 

et al. (2021) suggested that many fields have a vested 

stake in the study of star performers, as they may have 

certain strategic implications and may play a significant 

role in value creation under a range of contexts and 

environments. Within information systems, recent 

studies have examined star performers on online 

platforms, primarily in non-collaborative, competitive 

environments (e.g., Bockstedt et al., 2022; Foerderer et 

al., 2023; Zhang et al., 2019). These platforms, such as 

online contests and streaming services, feature star 

performers competing against other users, unlike OCCs, 

where collaboration is central to artifact creation. 

Research in these competitive contexts suggests that star 

performer presence can negatively affect participation 

(Bockstedt et al., 2022; Zhang et al., 2019) and that their 

departure can hinder overall production (Foerderer et al., 

2023). However, these findings may not translate to 

collaborative online environments, where star 

performers contribute alongside others. 

Two key points emerge from this review of star performer 

literature. First, most of the research is rooted in 

traditional offline organizational settings, underscoring 

the need to explore diverse contexts such as OCCs. 

Second, while studies in platform settings exist, they have 

been confined to non-collaborative settings with 

platform-wide star definitions and neglect the quality and 

popularity of collaboratively produced content. 

2.5 Research Gap 

This research addresses two significant gaps in the 

existing literature. First, Faraj et al. (2015, p. 395) 

highlight the discrepancy between formal roles and 

actual contribution, noting that “even when formal roles 

do exist in online communities, such as listserv owner 

and administrator, they are often not the ones who make 

the most significant contributions (Butler et al. 2008).” 

This observation underscores the dynamic nature of 

contributor behavior, which can fluctuate based on 

artifact specifics, external factors, motivations, and 

time. Consequently, rigid core-periphery classifications 

fail to capture the fluid boundaries inherent in OCC 

boundaries (Faraj & Sproull, 2000). To address this, our 

research advances a contribution-based 

conceptualization that identifies contributors providing 

recent and disproportionately high numbers of 

contributions. While prior conceptualizations have 

typically assumed a fixed ratio of contributions (e.g., 80-

20 rule) in their core-periphery classifications, our 

approach assumes and models for variability in the ratio 

of contributions while also considering the recency of 

contributions. Moreover, our conceptualization also 

allowed us to examine how the variability in the 

proportion of contribution across the core and periphery 

can affect OCC outcomes, which has not been explored 

in the literature. 
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Second, while the impact of contributors on OCC 

quality is recognized (Setia et al., 2012), the effect of 

disproportionate contributors (stars) on artifact quality 

and popularity remains underexplored. This gap 

necessitates longitudinal data to empirically examine 

these effects. 

This paper further distinguishes itself from prior work in 

two key aspects. First, studies within the open-source 

software context often use stars to denote the GitHub 

feature, indicating user interest in a project. For instance, 

Jarczyk et al. (2018) consider stars to be the number of 

GitHub platform users that are watching (similar to 

bookmarking) the focal OSS project, whereas Medappa 

and Srivastava’s (2019) use of stars “indicates 

approximately the number of people who are interested 

in and show support for that project” (p. 774). In 

contrast, our study defines stars as individual 

contributors who provide a disproportionate share of 

contributions to a specific OSS project. Second, unlike 

research on star contributors in traditional settings, this 

paper investigates their role in a collaborative context, 

adopts a content-level perspective of stars, and focuses 

on their impact on both the quality and popularity of 

collaboratively produced artifacts. 

3 A Theoretical Framework of Star 

Contributors 

This section outlines the theoretical framework for 

understanding star contributors in open collaborative 

communities (OCCs). In this section, we discuss a 

theoretical framework for star contributors. In Section 

3.1, we conceptualize and discuss star contributors 

across the artifact, community, and collaboration 

platform. In Section 3.2, we employ the concept of 

unequitable contributions and the theory of collective 

action to explore how star contributors influence other 

community members. Section 3.3 discusses the impact 

of environmental dynamism on the influence of star 

contributors on OCC artifacts. Finally, Section 3.3 

provides our study hypotheses, derived from the 

theoretical framework. 

3.1 Star Contributors and Open 

Collaboration Communities 

We conceptualize star contributors as individuals 

providing recent and disproportionate numbers of 

contributions to a focal OCC artifact. This 

conceptualization can be extended to the collaboration 

platform, community, or individual artifact, depending 

on the OCC’s context. At the platform level, star 

contributors provide a disproportionate number of 

contributions across the entire platform. For example, a 

star contributor on Stack Overflow might provide a 

high number of questions, answers, edits, and votes 

across diverse topics (Xu et al., 2020). Within a 

collaboration community, star contributors provide a 

disproportionate number of contributions to a specific 

community. For instance, a star contributor on Reddit’s 

personal finance subreddit might contribute 

significantly more posts, comments, and votes than 

other members (Burtch et al., 2022). Finally, at the 

artifact level, a contributor might provide a 

disproportionate number of edits to a specific Wikipedia 

article but have minimal contributions to other articles, 

making them a star contributor for that article but not the 

platform as a whole (Lin & Wang, 2020). 

This multilevel conceptualization of star contributors 

has two important implications. First, platform-level star 

contributors primarily concern platform owners, with 

limited direct impact on individual contributors. For 

example, while a list of top GitHub contributors might 

be interesting, it’s unlikely to significantly affect 

contributions to individual projects (Wasko & Faraj, 

2005). Similarly, identifying top contributors to the 

Python programming language community may have 

limited influence on individual contributions (Wasko et 

al., 2009). However, at the artifact level, star 

contributors significantly influence the artifact’s 

outcomes and signal its dynamics to the broader 

platform community. Second, unlike our contribution-

based conceptualization, which applies across artifact, 

community, and platform levels, the traditional core-

periphery model (Setia et al., 2012) is limited to the 

artifact level. This broader applicability enhances the 

generalizability of our approach within OCC contexts. 

Beyond its multilevel (platform, community, and 

artifact) applicability, our conceptualization of stars 

introduces the notion of variability in the level of 

contributions that make a star because the 

identification of stars should be dependent on both the 

OCC artifact and time. The level of contribution it 

takes a contributor to be identified as a star in one OCC 

artifact during a particular period may not be the same 

for another OCC artifact because of the differing 

nature of the OCC artifacts. The notion of variability 

in the proportion of the overall OCC contributions by 

stars further provides insights into a context 

characterized by contributor and contribution fluidity. 

Such fluidity may result in periods in the OCC artifact 

lifecycle that may have no stars because contributions 

are comparable among contributors. 

Star contributors are driven to maintain high 

performance levels by a combination of extrinsic and 

intrinsic motivations. Extrinsically, they seek to stand 

out, gain attention, increase their visibility, and acquire 

other positive externalities (Huang & Zhang, 2016; Xu 

et al., 2020). Intrinsically, they derive benefits such as 

happiness, satisfaction, and a sense of community. In 

OCC artifact development, star contributors are 

recognized for their contributions and may gain 

increased authority, privileges, or even governing 

positions (Daniel et al., 2013).  
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3.2 Unequitable Contributions to Open 

Collaboration Communities 

Our conceptualization of star contributors is rooted in the 

phenomenon of unequitable contributions observed in 

OCCs, where a small percentage of contributors produce 

a disproportionately large share of the output (Kuk, 2006; 

Mindel et al., 2018). Unequitable contributions have both 

positive and negative implications. Positively, they can 

lead to better coordination, tighter coupling, and 

improved skill-task fit, as specific contributors are often 

better suited to specific contribution needs (Hann et al., 

2013). Negatively, they can introduce vulnerability due to 

the inherent fluidity of OCCs, characterized by 

unrestricted resource inflow and outflow (Faraj et al., 

2011), and facilitate free-riding behavior, where 

individuals benefit without contributing. 

The theory of collective action (Oliver & Marwell, 1988) 

posits that unequitable contributions by a small, 

heterogeneous group can generate the critical mass 

necessary for widespread collective action within OCCs. 

For instance, a small group’s initial efforts can attract 

broader community participation. However, empirical 

evidence from OCCs demonstrates a tendency for 

contributions to concentrate among a subset of members 

(Kuk, 2006; Von Krogh et al., 2012). The concept of 

strategic interaction suggests that individuals make 

strategic decisions about their participation (Oliver & 

Marwell, 1988). Specifically, individuals are drawn to 

resourceful, successful, popular communities and 

individuals that align with their objectives, while avoiding 

participation when they perceive a risk of failure. 

Consequently, “strategic interaction has not only resulted 

in participation inequality but also concentrated OSS 

participation on the types of epistemic interactions that 

matter most to OSS development” (Kuk, 2006, p. 1033). 

In Section 3.4, we examine unequitable contributions and 

draw on the theory of collective action to identify 

underlying theoretical mechanisms that can explain the 

impact of star contributors on OCC artifact quality and 

popularity. 

3.3 Star Contributors and Environmental 

Dynamism 

The artifact’s environment is a significant contextual 

factor that can influence the performance of star 

contributors (Aguinis & O’Boyle, 2014). OCC artifacts 

typically operate within either relatively static or dynamic 

environments (Baskerville et al., 2003). Static 

environments are characterized by predictable resources, 

tasks, and a plan-driven development approach (Harris et 

al., 2009). Examples include incremental feature additions 

to existing artifacts or applications where rapid market 

entry is not critical. Conversely, dynamic environments 

are marked by uncertainty regarding resources and tasks, 

necessitating flexible approaches that adapt to changing 

conditions (e.g., speed to market, critical updates) and user 

feedback (Baskerville et al., 2003). 

In dynamic environments, adaptive and iterative 

approaches, such as agile methodologies, are favored for 

their ability to incorporate user feedback and tame 

uncertainty (Harris et al., 2009). These approaches 

emphasize collaboration and require specific resources, 

such as team members with domain and application 

expertise. The primary goal is to facilitate timely responses 

to environmental dynamism (Maruping et al., 2009). 

Prior research suggests that star performers are particularly 

valuable in dynamic environments (Asgari et al., 2021; 

Campbell, 2014). In peer production models, especially 

OCC software development, we argue that the 

disproportionate size and recency of star contributors’ 

contributions are crucial for navigating increasing 

dynamism. Specifically, a high proportion of recent 

contributions equips star contributors to identify critical 

challenges, propose effective solutions, rapidly 

incorporate user feedback, and communicate effectively 

with the community (Cram et al., 2016). 

3.4 Hypotheses 

Figure 1 illustrates our research model. 

 
Note: Dashed lines indicate nonlinear relationships.  

Figure 1. Research Model 



Journal of the Association for Information Systems 

271 

3.4.1 Effect of Star Contributors on Artifact 

Quality 

We hypothesize that an increase in the number of star 

contributors increases the quality of focal OCC artifacts 

up to a certain threshold, beyond which an increase in the 

number of star contributors decreases the quality of focal 

OCC artifacts. While contributions from star contributors 

address quality-related issues (Setia et al., 2012; Von 

Krogh et al., 2012), a scarcity of such contributors can 

impede OCC quality. This is due to factors such as 

concentrated workload leading to cognitive strain, limited 

resource availability, the potential for select contributors 

to dominate discussions, and constraints on the 

exploration of diverse design solutions (Jones et al., 2004; 

Kuk, 2006). Conversely, an excessive number of star 

contributors may also negatively affect OCC quality. This 

can result from heightened coordination costs, diminished 

group cohesiveness, and increased inefficiencies 

stemming from overlapping or redundant efforts 

(Overbeck et al., 2005). Furthermore, as contributions 

increase, so does the contributor’s influence over the 

OCC artifact (Dahlander & O’Mahony, 2011). 

Consequently, an overabundance of star contributors can 

escalate tensions regarding the artifact’s design and 

overall direction (Faraj et al., 2011), fostering dysfunction 

and stagnation, which ultimately compromises artifact 

quality. Hence, we hypothesize:  

H1: The number of star contributors contributing to an 

online open collaboration community artifact is 

curvilinearly related to the artifact’s quality, such 

that a moderate number of star contributors is 

associated with the highest quality (inverted U-

shaped relationship). 

3.4.2 Effect of Star Contributors on Artifact 

Popularity 

The popularity of an OCC artifact is influenced by 

community interest, which is driven by motivations such 

as learning, utilizing the artifact’s solutions (e.g., 

addressing a novel problem), and contributing to its 

development. While static artifact properties such as 

topic, programming language, and administrator 

influence popularity, we hypothesize that the number of 

star contributors also plays a significant role. Specifically, 

we propose an inverted U-shaped relationship between 

the number of star contributors and OCC artifact 

popularity: Increasing the number of star contributors 

enhances popularity up to a critical threshold, beyond 

which further increases lead to a decline. 

Initially, an increasing number of star contributors 

signals the presence of resourceful individuals. Drawing 

upon the theory of strategic interactions (Oliver & 

Marwell, 1988), the concentration of resourceful 

individuals attracts community members seeking 

connections. Consequently, the artifact’s popularity, as 

measured by user interest, increases. Furthermore, 

platform mechanisms reinforce this trend. In 

collaborative settings, platform-level star contributors 

exert influence and attract attention to OCC artifacts 

(Blincoe et al., 2016; Lee et al., 2013; Weng & Soh, 

2023). When star contributors possess significant 

followings, their contributions trigger notifications, 

driving followers to explore the artifact and boosting its 

popularity (Blincoe et al., 2016; Lee et al., 2013; Weng 

& Soh, 2023). Even when star contributors lack large 

followings, their activity signals the artifact’s active 

status to platform users. OCC platforms often highlight 

recently active or highly contributed artifacts, thereby 

increasing visibility. Thus, an increase in star 

contributors leads to increased artifact popularity. 

However, based on the theory of collective action 

(Oliver & Marwell, 1988) and strategic interactions 

(Kuk, 2006), users strategically select OCC artifacts to 

connect with resourceful individuals. As the number of 

star contributors surpasses a critical threshold, users face 

challenges in identifying contributors aligned with their 

participation goals. Additionally, reciprocity, a crucial 

mechanism for epistemic interactions in OCC artifacts 

(Ye et al., 2018), is affected. While an increasing 

number of star contributors can facilitate reciprocity by 

distributing the interaction load, an excessive number 

diminishes the bandwidth for meaningful reciprocal 

discussions. Hence, we hypothesize: 

H2: The number of star contributors contributing to an 

online open collaboration community artifact is 

curvilinearly related to the artifact’s popularity, 

such that a moderate number of star contributors is 

associated with the highest increase in popularity 

(inverted U-shaped relationship). 

3.4.3 Moderating Role of the Proportion of 

Star Contributors’ Contributions on 

Artifact Quality 

We propose that the curvilinear relationship between the 

number of star contributors and OCC artifact quality is 

moderated by the relative proportion of star contributors’ 

contributions. Specifically, we identify distinct 

mechanisms that explain both the increase and decrease 

in artifact quality associated with varying proportions of 

star contributor involvement. 

We identify four mechanisms that explain the increase in 

artifact quality. First, OCCs are characterized by flat 

organizational structures, where coordination is 

paramount (Faraj et al., 2015). An increased proportion of 

star contributors’ contributions reduces coordination 

costs (Lerner & Tirole, 2005). These costs, encompassing 

resource allocation for minimizing redundancy, ensuring 

comprehensive problem coverage, and aligning disparate 

contributions, directly impact available resources, thereby 

positively influencing OCC quality. Second, a 

disproportionate number of contributions from star 

contributors reduces the resource burden for community 
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reciprocation and engagement. Star contributors, having 

internalized OCC norms, require less engagement, 

freeing resources for artifact improvement. Third, 

equitability in OCC highlights the importance of aligning 

contributors’ skills to the task at hand (Kuk, 2006; Mindel 

et al., 2018). Increased star contributor involvement 

enhances this alignment, leading to improved task 

execution and artifact quality. Finally, star contributors 

exert a “peer productivity effect,” motivating non-star 

contributors to increase their productivity (Falk & Ichino, 

2006; Ichniowski & Preston, 2014). Mas and Moretti 

(2009) suggest that the increase in productivity by low-

performing workers is driven by the need to minimize 

productivity differentials, hence leading to an increase in 

overall team productivity with a positive effect on 

outcomes. In the OCC context, non-star contributors 

internalize star contributors’ higher proportion of total 

contributions to improve their own contributions and 

minimize the productivity differential. The increased 

contribution will lead to more issues being resolved and 

defects fixed in the OCC artifact, and by extension, will 

increase the quality of the OCC artifact. 

A concentration of star contributors’ contributions can 

negatively impact OCC artifact quality through four key 

mechanisms. First, it can increase the artifact’s 

vulnerability to contributor attrition (Mindel et al., 2018). 

Attrition, in this context, refers to contributors diverting 

their efforts, driven by personal motivations or external 

factors, away from the focal artifact to other community 

projects or entirely outside the community. Consequently, 

fluctuations in star contributors’ contributions can 

significantly destabilize the artifact. Second, an excessive 

concentration of contributions can overwhelm 

contributors and strain available resources, reducing the 

time allocated for thorough design exploration (Brooks, 

1987). This time constraint can lead to an increase in 

errors associated with proposed solutions. Third, the 

resulting increase in errors can create a critical dilemma: 

prioritizing progress by limiting features or addressing 

existing errors. Both choices negatively affect artifact 

quality. Finally, a disproportionate reliance on star 

contributors can generate skill gaps, where the available 

expertise does not align with the necessary tasks. This 

misalignment can lead to suboptimal solutions, ultimately 

diminishing the overall quality of the OCC artifact.  

In summary, these arguments suggest that the effect of 

star contributors on OCC artifact quality will vary with 

the relative proportion of star contributors’ contributions 

to the artifact. Hence, we hypothesize: 

H3: The relative proportion of the star contributors’ 

contributions moderates the relationship between 

the number of star contributors and artifact quality, 

such that an increase in the relative proportion of 

their contributions strengthens the effect on artifact 

quality (i.e., the curve is more pronounced).   

3.4.4 Moderating Role of the Proportion of 

Star Contributors’ Contributions on 

Artifact Popularity 

We propose that the curvilinear relationship between the 

number of star contributors and OCC artifact popularity 

is moderated by the relative proportion of star 

contributors’ contributions. Drawing upon the theory of 

collective action (Oliver & Marwell, 1988) and strategic 

interactions (Kuk, 2006), users strategically associate 

with resourceful individuals to achieve participation 

objectives, such as learning artifact norms before 

contributing, and to engage with successful artifacts 

(Kuk, 2006; Oliver & Marwell, 1988). As the proportion 

of star contributors’ contributions increases, community 

members can more readily identify and connect with 

these resourceful individuals and the associated OCC 

artifact, due to its perceived likelihood of success. In 

practice, a disproportionate increase in individual 

contributions attracts community attention (Yang & Shi, 

2011), often operationalized through follower counts (Wu 

et al., 2009). This heightened visibility fosters a 

perception of increased artifact success, further drawing 

community interest. For example, in open source 

software OSS contexts, star contributors’ contributions 

positively influence their followers’ engagement (Lee et 

al., 2013; Moqri et al., 2018). 

However, a disproportionate proportion of contributions 

attributed to star contributors can also negatively impact 

OCC artifact popularity. Specifically, it can signal 

vulnerabilities related to contributor attrition, resource 

strain, and the homogeneity of contributions. 

Consequently, even when star contributors initially attract 

attention, potential contributors may refrain from 

participation due to an “anticipatory fear of failure in 

collective action” (Kuk, 2006, p. 1032). In summary, 

these arguments suggest that the effect of star contributors 

on OCC artifact popularity is contingent on the relative 

proportion of their contributions. Hence, we hypothesize: 

H4: The relative proportion of star contributors’ 

contributions moderates the relationship between 

the number of star contributors and artifact 

popularity, such that an increase in the relative 

proportion of their contributions strengthens the 

effect on artifact popularity (i.e., the curve is more 

pronounced).  

3.4.5 Moderating Role of OCC Artifact’s 

Environmental Dynamism on Artifact 

Quality 

We propose that the level of environmental dynamism 

moderates the curvilinear relationship between the 

number of star contributors and artifact quality. 

Specifically, we identify distinct mechanisms that explain 

both the increase and decrease in artifact quality under 

varying levels of environmental dynamism. 
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We identify three mechanisms to explain the increase in 

artifact quality. First, star contributors, embedded in 

epistemic exchanges, possess a deep understanding of the 

rules, norms, and social structures of the OCC (Wasko & 

Faraj, 2005; Wasko et al., 2009). Consequently, an 

increase in star contributors provides readily deployable 

resources to address the demands of environmental 

dynamism and enhance artifact quality. Second, their 

embeddedness affords star contributors superior insight 

into OCC norms, problems, design solutions, and 

problem-solution matching. This expertise minimizes the 

time required for efficient task execution (Brooks, 1987), 

leading to positive downstream effects on artifact quality. 

Finally, given their familiarity with contribution norms, 

an increase in star contributors offers resources that can 

be deployed with minimal coordination costs (Faraj & 

Sproull, 2000), such as integrating contributions, 

reducing redundancy, and facilitating key decision-

making. In environments characterized by high 

dynamism, these readily available, proven solutions 

significantly enhance artifact quality. 

Conversely, under conditions of high environmental 

dynamism, an excessive number of star contributors can 

diminish artifact quality through two primary 

mechanisms. First, while star contributors internalize 

OCC rules and norms, exceeding a critical threshold 

increases coordination costs, yielding diminishing returns 

in terms of artifact quality (Faraj & Sproull, 2000). 

Second, high environmental dynamism necessitates rapid 

decision-making and direction. OCC research indicates 

that contributors ascend to leadership roles based on their 

contributions, influencing the design and direction of 

OCCs (Dahlander & O’Mahony, 2011). However, an 

overabundance of star contributors can lead to competing 

directions within a flat organizational structure, hindering 

swift decision-making and negatively impacting artifact 

quality. Hence, we hypothesize that: 

H5: The level of OCC artifact environmental dynamism 

moderates the relationship between the number of 

star contributors and artifact quality, such that an 

increase in the OCC artifact environmental 

dynamism strengthens the effect on artifact quality 

(i.e., the curve is more pronounced). 

3.4.6 Moderating Role of OCC Artifact 

Environmental Dynamism on Artifact 

Popularity 

We propose that the level of environmental dynamism 

moderates the curvilinear relationship between the 

number of star contributors and artifact popularity. 

Specifically, we identify distinct mechanisms that explain 

both the increase and decrease in artifact popularity under 

varying levels of environmental dynamism. 

We identify three mechanisms to explain the increase in 

artifact quality. First, heightened environmental 

dynamism often necessitates rapid responses. 

Consequently, contributions lead to shorter outcome 

cycles. With an increase in the number of star 

contributors, community members perceive a greater 

likelihood of artifact success (Oliver & Marwell, 1988), 

thereby increasing artifact popularity. Second, in 

environments characterized by high dynamism, an 

increased number of star contributors fosters positive 

community synergy, attracting members for socialization 

(Malgonde et al., 2023) and subsequently enhancing 

artifact popularity. Finally, OCC platforms often promote 

artifacts based on contribution metrics. Frequent actions, 

such as votes in Stack Overflow discussions or open 

source software releases, in response to environmental 

dynamism and an increased number of star contributors, 

may elevate these metrics, thereby attracting OCC 

members outside the immediate contributor network. 

Conversely, under conditions of high environmental 

dynamism, an excessive number of star contributors can 

diminish artifact popularity through two primary 

mechanisms. First, increased coordination challenges and 

competing directions can negatively impact perceived 

artifact success. Consequently, community members are 

less likely to associate with artifacts deemed likely to fail 

(Kuk, 2006). Second, high environmental dynamism and 

an increased number of star contributors can overwhelm 

community members with cognitive load, such as 

tracking design changes, issues, and proposed solutions. 

This perceived volatility and rapid pace may misalign 

with members’ participation objectives, such as learning 

or contributing, thereby reducing artifact popularity. 

Hence, we hypothesize: 

H6: The level of OCC artifact environmental dynamism 

for an artifact moderates the relationship between 

the number of star contributors and artifact 

popularity, such that an increase in the OCC 

artifact environmental dynamism strengthens the 

effect on artifact popularity (i.e., the curve is more 

pronounced). 

4 Method 

4.1 Data 

Our empirical setting for online collaborative 

communities is open source software (OSS) 

development, where each OSS project serves as an 

artifact. We utilized data from GitHub, a prominent 

OSS platform facilitating contributions from 

geographically distributed IT professionals. Appendix 

Figure A1 details our sample selection procedure, 

which drew from data spanning 2015 to 2019. Initially, 

we identified over 1.5 million projects featuring 

releases, defined as packaged, production-ready code 

versions. For each project, we programmatically 

extracted profile information, including owner type, 

project creation timestamp, popularity metrics, and the 

number of forks (copies) created on the platform. 
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Projects were excluded from the sample if they: (1) 

were deleted from GitHub, (2) exhibited inconsistent 

panel data (i.e., missing data creating temporal gaps), 

or (3) involved only a single contributor. To ensure 

sufficient data for empirical analysis and following 

prior research (Safadi et al., 2021; Zaheer et al., 1999), 

we aggregated project-level data annually. Our final 

sample comprised 21,456 OSS projects, with an 

average of 17.7 unique contributors per project. 

4.2 Variables 

4.2.1 Dependent Variables 

This study had two primary dependent variables: project 

quality and project popularity. Project quality was 

operationalized as the number of closed issues. Issues, in 

this context, represent formal requests submitted by OSS 

community members, enabling project teams to 

systematically address and resolve quality-related 

concerns. Project popularity was measured by the number 

of bookmarks for the focal project. GitHub’s bookmarking 

feature allows platform users to track projects of interest 

and receive updates on their development. 

4.2.2 Independent Variables 

This study employed three key independent variables: the 

number of star contributors (NoOfStars), the proportion 

of contributions by star contributors (PropOfStarCont), 

and project environmental dynamism (ProjDyn). 

First, the number of star contributors (NoOfStars) within 

an OSS project during a given year was considered. 

Extant research has identified star contributors as those 

whose contributions exceed the mean (Baba et al., 2009) 

or are 3 standard deviations above the mean (Hess & 

Rothaermel, 2011; Rothaermel & Hess, 2007). Following 

Rothaermel and Hess (2007) and Hess and Rothaermel 

(2011), we identified star contributors as individuals 

whose contributions are 3 standard deviations2 above the 

mean for a specific OSS project in a given year. 

Consistent with Daniel et al. (2013), we adopted a broad 

definition of OSS project contributions, encompassing 

both code and non-code activities (e.g., commits, 

comments, issue creation/updates, and wiki 

creation/updates). For each project-year dyad, we 

calculated the count of star contributors (NoOfStars). 

Second, the proportion of contributions by star 

contributors (PropOfStarCont) was operationalized as 

the ratio of (1) the total contributions made by star 

contributors to a focal project in a given year to (2) the 

total contributions made to that focal project in that year. 

For instance, if star contributors contributed 64 out of 100 

total contributions to a project in a given year, the 

PropOfStarCont would be 0.64. 

 
2 Appendix Table A1 presents robustness tests using one standard 

deviation, demonstrating qualitatively consistent results. 

Finally, project environmental dynamism (ProjDyn) 

was operationalized as the average annual software 

release rate. A higher release rate indicates a project 

team’s adaptive response to a dynamic environment, 

reflecting rapid project changes and enhancements. We 

used the average release rate as a reflective measure of 

project dynamism. 

4.2.3 Control Variables 

To account for potential confounding factors, we included 

several control variables. These include: the number of 

non-star contributors (NoOfNonStars), project tenure 

(ProjTenure), owner tenure on the OSS platform 

(OwnTenure), owner type (OwnType, indicating 

individual or organizational ownership), average annual 

contribution to the project (AveYrCont), and total annual 

contributions to the project (TotYrCont). Additionally, we 

controlled for the number of issues opened in the project 

during the year (IssOpen), as this may have influenced the 

number of issues that were closed. Table 3 outlines the 

measurement of these variables, and Table 4 presents 

descriptive statistics for the key variables in this study. 

4.3 Econometric Considerations 

We employed hierarchical linear modeling (HLM; 

Raudenbush & Bryk, 2002) to analyze our data for two 

primary reasons: first, our data exhibited a panel structure 

with yearly observations nested within OSS projects; 

second, this nested structure violates the independence 

assumption inherent in standard regression methods. 

HLM effectively addresses the statistical limitations of 

standard regression when analyzing nested data 

(Hofmann, 1997). Moreover, given our expectation that 

period-level effects would vary across OSS projects, 

HLM allowed us to account for both period-varying and 

project-varying factors in our hypothesis tests. 

Following an incremental modeling approach (Kreft et 

al., 1998), we proceeded through several stages. 

Initially, we specified a null model (Model 1 in Tables 

4 and 5), devoid of period- or project-level predictors. 

This model, analogous to a one-way ANOVA with 

random effects, enabled us to assess significant variance 

in our dependent variables at each level (period and 

project), validating the necessity of a multilevel analysis 

(Kreft et al., 1998). Subsequently, we introduced control 

variables (Model 2 in Tables 4 and 5), followed by our 

key predictors (Models 3 and 4 in Tables 4 and 5) to 

examine the relationship between star contributors and 

the dependent variables. We then included the period-

level moderator (Model 5 in Tables 4 and 5) to test 

hypotheses regarding the relative proportion of stars’ 

contributions. Finally, we added the project-level 

moderator (Model 6 in Tables 4 and 5) to assess the 
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moderating effect of environmental dynamism. This 

incremental approach allowed us to observe the variance 

changes in outcomes across the models. We utilized 

random effects modeling to control for unobserved 

heterogeneity and account for interproject variation. 

We performed several supporting tests to ensure the 

robustness of our findings. First, the distributional 

assumptions of HLM were met. Second, the Kolmogorov-

Smirnov test confirmed the normality of residuals at the 

0.1% significance level for all models. We observed low 

multicollinearity, with variance inflation factor values 

below 10. Third, the Breusch-Pagan test (Raudenbush & 

Bryk, 2002) indicated no evidence of heteroskedasticity at 

the 0.1% significance level. Fourth, we group-mean 

centered period-level variables and grand-mean centered 

project-level variables to mitigate non-essential 

multicollinearity and enhance result robustness. Finally, 

we estimated our models using full maximum-likelihood 

estimation (Raudenbush & Bryk, 2002; Setia et al., 2012). 

The following are equations for the one-way ANOVA 

model (Model 1) and full model (Model 6). One-way 

ANOVA with random effects model (Model 1): 

𝑃𝑒𝑟𝑓𝑖𝑗 =  𝛽0𝑗 + 𝑟, 

𝛽0𝑗 =  𝛾00 + 𝑢0 

Full model with cross-level effects (Model 6): 

𝑌𝑖𝑗 =  𝛽0𝑗 + 𝛽1𝑗 ∗ (𝑁𝑜𝑂𝑓𝑆𝑡𝑎𝑟𝑠) + 𝛽2𝑗 ∗ (𝑁𝑜𝑂𝑓𝑆𝑡𝑎𝑟𝑠)2 + 𝛽3𝑗

∗ (𝑁𝑜𝑂𝑓𝑆𝑡𝑎𝑟𝑠) ∗ (𝑃𝑟𝑜𝑝𝑂𝑓𝑆𝑡𝑎𝑟𝐶𝑜𝑛𝑡)
+ 𝛽4𝑗 ∗ (𝑁𝑜𝑂𝑓𝑆𝑡𝑎𝑟𝑠)2

∗ (𝑃𝑟𝑜𝑝𝑂𝑓𝑆𝑡𝑎𝑟𝐶𝑜𝑛𝑡) + 𝛽5𝑗

∗ (𝑃𝑟𝑜𝑝𝑂𝑓𝑆𝑡𝑎𝑟𝐶𝑜𝑛𝑡) + 𝛽6𝑗

∗ (𝑁𝑜𝑂𝑓𝑆𝑡𝑎𝑟𝑠) ∗ (𝑃𝑟𝑜𝑗𝑉𝑒𝑙) + 𝛽7𝑗

∗ (𝑁𝑜𝑂𝑓𝑆𝑡𝑎𝑟𝑠)2 ∗ (𝑃𝑟𝑜𝑗𝑉𝑒𝑙) + 𝛽8𝑗

∗ (𝑁𝑜𝑂𝑓𝑁𝑜𝑛𝑆𝑡𝑎𝑟𝑠) + 𝛽9𝑗 ∗ (𝑇𝑜𝑡𝑌𝑟𝐶𝑜𝑛𝑡)

+ 𝛽10𝑗 ∗ (𝐴𝑣𝑒𝑌𝑟𝐶𝑜𝑛𝑡) + 𝛽11𝑗 ∗ (𝐼𝑠𝑠𝑂𝑝𝑒𝑛)

+ 𝑟, 

𝛽0𝑗 =  𝛾00 + 𝛾01 ∗ (𝑃𝑟𝑜𝑗𝑇𝑒𝑛𝑢𝑟𝑒) + 𝛾02 ∗ (𝑂𝑤𝑛𝑇𝑒𝑛𝑢𝑟𝑒) + 𝛾03

∗ (𝑂𝑤𝑛𝑇𝑦𝑝𝑒) + 𝛾04 ∗ (𝑃𝑟𝑜𝑗𝑉𝑒𝑙) + 𝑢0, 

𝛽1𝑗 =  𝛾10; 𝛽2𝑗 = 𝛾20;  𝛽3𝑗 = 𝛾30;  𝛽4𝑗 = 𝛾40; 𝛽5𝑗 = 𝛾50; 𝛽6𝑗 =

𝛾61 ∗ (𝑃𝑟𝑜𝑗𝑇𝑒𝑛𝑢𝑟𝑒) + 𝛾62 ∗ (𝑂𝑤𝑛𝑇𝑒𝑛𝑢𝑟𝑒) + 𝛾63 ∗
(𝑂𝑤𝑛𝑇𝑦𝑝𝑒) + 𝛾64 ∗ (𝑃𝑟𝑜𝑗𝑉𝑒𝑙); 𝛽7𝑗 = 𝛾71 ∗ (𝑃𝑟𝑜𝑗𝑇𝑒𝑛𝑢𝑟𝑒) +

𝛾72 ∗ (𝑂𝑤𝑛𝑇𝑒𝑛𝑢𝑟𝑒) + 𝛾73 ∗ (𝑂𝑤𝑛𝑇𝑦𝑝𝑒) + 𝛾74 ∗
(𝑃𝑟𝑜𝑗𝑉𝑒𝑙); 𝛽8𝑗 = 𝛾80; 𝛽9𝑗 = 𝛾90; 𝛽10𝑗 = 𝛾100; 𝛽11𝑗 = 𝛾110  

The dependent variable, 𝑌𝑖𝑗 , represents project quality and 

project popularity for a focal project in a focal year. The 

periodic observations are denoted as i, with a range from 1 

(2015) to 5 (2019), and j denotes the OSS project, which 

ranges from 1 to 21,456. The  𝛾𝑖𝑗 represents project level 

variable j on the corresponding 𝛽𝑖𝑗 that measures the effect 

of periodic level variable i on the performance variables. 

Table 3. Variables 

 Variable Description and measurement 

Dependent 

variables 

OSS project quality 

(issues closed) 

Number of issues closed in the year. Issues are formal requests logged in 

the system by OSS community and/or project members, allowing the 

project team to systematically address quality issues in the project. 

OSS project popularity 

(watch events) 

Number of bookmarks for the focal project in the year. The OSS platform 

allows users to bookmark a focal project to receive regular updates 

related to the focal project. 

Independent 

variables 

Number of star contributors 

(NoOfStars) 

Count of contributors whose contributions are three standard deviations 

above the mean contribution to an OSS project in a specific year. 

Proportion of contributions by star 

contributors 

(PropOfStarCont) 

Ratio of (1) the sum of all the contributions to a focal project in a focal 

year made by star contributors to (2) the sum of contributions made to 

the focal project in the focal year. 

Project Dynamism 

(ProjDyn) 

Average rate of software release per year in the project. 

Control 

variables 

Number of non-star contributors 

(NoOfNonStars) 

Number of contributors for each year-project dyad with contributions 

less than or equal to three standard deviations of the mean contributions. 

Project Tenure 

(ProjTenure) 

Age (in years) of the focal project at the start of a given year. 

Owner Account Age 

(OwnTenure) 

Age (in days) of the focal project’s owner at the start of a given year. 

Owner Type 

(OwnType) 

Classification of a focal project owner as individual or organization. 

Average contributions in the year 

(AveYrCont) 

For a focal project and year, average contributions across all contributors. 

Total contributions in the year 

(TotYrCont) 

For a focal project and year, total contributions across all contributors. 

Issues Opened in the year 

(IssOpen) 

For a focal project and year, total issues opened. 

Note: This table provides a description and measurement for each variable used in our empirical analysis. The context of our analysis is an open 

source software platform (GitHub). All variables are derived from data provided by GitHub. 
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Table 4. Descriptive Statistics and Correlations 
  

Mean SD Min Max 1 2 3 4 5 6 7 8 9 10 11 

1 Issues Closed 17.07 91.31 0 7,412 - 

          

2 Watch Events 79.05 418.37 0 20,416 0.43*** - 

         

3 NoOfStars 0.30 0.63 0 21 0.42*** 0.39*** - 

        

4 PropOfStarCont 0.13 0.24 0 0.995 0.22*** 0.22*** 0.76*** - 

       

5 ProjDyn 3.68 27.56 0 4144.33 0.06*** 0.03*** 0.05*** 0.05*** - 

      

6 NoOfNonStars 18.69 92.42 2 8,138 0.75*** 0.57*** 0.49*** 0.20*** 0.04*** 

      

7 ProjTenure 1.47 1.05 0.08 3.92 0.00 0.00 0.03*** 0.00 0.00 0.00 - 

    

8 OwnType 0.34 0.47 0 1 -0.02*** 0.07*** 0.03*** 0.12*** 0.02*** -0.12*** 0.02*** - 

   

9 OwnTenure 3.82 2.39 -7.91 10.92 -0.02*** 0.02*** 0.03*** 0.03*** -0.02*** -0.03*** 0.48*** 0.27*** - 

  

10 IssOpen 20.34 98.18 0 9,107 0.94*** 0.46*** 0.46*** 0.23*** 0.06*** -0.23*** -0.01*** -0.02*** -0.03*** - 

 

11 AveYrCont 23.41 527.33 1.06 1,03,824 0.01** 0.00 -0.01* -0.01* 0.22*** 0.01* 0.00 -0.01 -0.01 0.01** - 

12 TotYrCont 299.39 3,011.23 3 4,32,971 0.61*** 0.27*** 0.21*** 0.09*** 0.11*** -0.09*** 0.00 -0.03*** -0.01** 0.58*** 0.46*** 

Note: N = 21,456 at the open source software project level. Pairwise correlations and univariate statistics are at the periodic level. The significance of coefficients is 

evaluated as *p < 0.05, **p < 0.01, ***p < 0.001. Minimum value for OwnTenure is negative.3  Upon investigation, we observed that certain users in our sample had 

activity before and after creation of their account. For example, consider User A whose account is created on May 25, 2012. In our data, we might observe that User 

A has created project abc on May 26, 2012, and project xyz on April 23, 2012. Consequently, the owner’s tenure for project xyz would be logged as a negative value 

for project xyz. A possible explanation of this observation is that User A may have deleted and re-created their account. Since OwnTenure is a control variable that 

captures how long User A has been an account holder on the GitHub platform, a negative value for project xyz would just show that User A has been on the platform 

longer than their most recent account. 

5 Results 

5.1 Main Results 

Tables 5 and 6 present the results of our HLM analyses. 

Table 5 details the findings for project quality, while 

Table 6 reports the results for project popularity. For each 

dependent variable, we first examined the variance across 

levels and then assessed the variance explained by the 

introduction of independent variables. 

The intraclass correlation coefficient (ICC) from the null 

model (Model 1 in Tables 5 and 6), which includes only 

the intercept, indicates the relative variance in the 

dependent variables across periodic and project levels 

(Raudenbush & Bryk, 2002). The ICC reveals that a 

substantial portion of the variance resided at the project 

level (60.92% for project quality and 70.49% for project 

popularity), with the remaining variance at the periodic 

level. These ICC values justify our utilization of a 

multilevel structure and provide a baseline for comparing 

model fit. For both dependent variables, we observe a 

progressive reduction in variance relative to the null 

model as additional independent variables are introduced. 

The hypothesis tests for the specific effects of our key 

independent variables are presented in Models 4, 5, and 6 

in Tables 5 and 6. Model comparisons were conducted 

using the deviance statistic, and deviance differences 

were assessed via a variance-covariance comparison test. 

H1 proposed a curvilinear (inverted U-shaped) relationship 

between the number of star contributors and OCC artifact 

 
3 We thank the anonymous reviewer for this discussion. 

quality. In alignment with our predictions, the results 

indicate an inverted U-shaped relationship, with project 

quality peaking at a moderate number of star contributors. 

Specifically, Model 4 of Table 5 reveals a negative and 

statistically significant coefficient for the squared term 

NoOfStars2 (β = -1.466, p < 0.001), supporting H1. This 

inverted U-shaped relationship is visually depicted in Panel 

(a) of Appendix Figure A2. 

H2 posited a curvilinear (inverted U-shaped) relationship 

between the number of star contributors and project 

popularity. In accordance with our predictions, the results 

demonstrate an inverted U-shaped relationship, with 

project popularity peaking at a moderate number of star 

contributors. Specifically, Model 4 of Table 6 reveals a 

negative and statistically significant coefficient for the 

squared term NoOfStars2 (β = -2.983, p < 0.001), 

supporting H2. This inverted U-shaped relationship is 

visually depicted in Panel (b) of Appendix Figure A2. 

H3 proposed that the proportion of contributions by star 

contributors moderates the relationship between the 

number of star contributors and artifact quality, such that an 

increase in the proportion of star contributions strengthens 

the inverted U-shaped relationship. Model 5 of Table 5 

reveals a statistically significant and negative coefficient 

for the interaction term NoOfStars2 × PropOfStarCont (β 

= -1.413, p < 0.001), indicating that a higher proportion of 

star contributions strengthens the curvilinear effect on 

artifact quality. This strengthening effect is visually 

depicted in Panel (a) of Appendix Figure A3.
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Table 5. Results of HLM Estimation (OSS Product Quality) 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Intercept 15.956*** 16.532*** 15.541*** 14.799*** 12.459*** 12.589*** 

 (0.510) (0.625) (0.625) (0.631) (0.636) (0.645) 

NoOfNonStars 
 

0.115*** 0.109*** 0.122*** 0.126*** 0.152***   
(0.003) (0.003) (0.003) (0.003) (0.003) 

ProjTenure 
 

0.401 0.622** 0.895*** 0.583** 0.276   
(0.219) (0.219) (0.219) (0.218) (0.230) 

OwnTenure 
 

-0.098 -0.337 -0.600*** -0.24 -0.086   
(0.178) (0.178) (0.179) (0.178) (0.182) 

AveYrCont 
 

-0.008*** -0.008*** -0.007*** -0.007*** -0.006***   
(0.000) (0.000) (0.000) (0.000) (0.000) 

TotYrCont 
 

0.005*** 0.005*** 0.004*** 0.004*** 0.004***   
(0.000) (0.000) (0.000) (0.000) (0.000) 

OwnType 
 

-2.276* -2.146* -2.235* -3.744*** -4.040***   
(1.090) (1.079) (1.088) (1.078) (1.113) 

ProjDyn 
 

0.133*** 0.130*** 0.129*** 0.124*** 0.085***   
(0.016) (0.016) (0.016) (0.016) (0.016) 

IssOpen 
 

0.685*** 0.682*** 0.684*** 0.680*** 0.692***   
(0.002) (0.002) (0.002) (0.003) (0.003) 

NoOfStars 
  

3.110*** 7.919*** 13.516*** 10.136***    
(0.278) (0.342) (0.588) (0.615) 

NoOfStars2 
   

-1.466*** -1.936*** -0.969***     
(0.059) (0.080) (0.088) 

PropOfStarCont 
    

-39.282*** -42.394***      
(1.765) (1.824) 

NoOfStars × PropOfStarCont 
    

44.657*** 61.149***      
(2.360) (2.557) 

NoOfStars2 × PropOfStarCont 
    

-1.413*** -7.506***      
(0.415) (0.567) 

NoOfStars × ProjTenure 
     

0.797**       
(0.243) 

NoOfStars × OwnTenure 
     

-0.078       
(0.156) 

NoOfStars × OwnType 
     

1.794*       
(0.808) 

NoOfStars × ProjDyn 
     

0.644***       
(0.020) 

NoOfStars2 × ProjTenure 
     

0.004       
(0.031) 

NoOfStars2 × OwnTenure 
     

-0.100***       
(0.026) 

NoOfStars2 × OwnType 
     

-1.490***       
(0.206) 

NoOfStars2 × ProjDyn 
     

-0.187***       
(0.005) 

Deviance  

(-2 log likelihood) 
984517.4 898237.0 898118.0 897511.6 896825.0 895168.3 

Deviation difference  

(∆ Dev) 
 86280.4*** 119.0*** 606.4*** 686.6*** 1656.7*** 

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at Level 2. Deviation differences were calculated 

as the difference between the current model and the previous model, i.e., ∆ D2 = D2-D1 and ∆ D5 = D5-D4. The significance of difference was 
tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors 

in parentheses. 

  



Star Contributors in Online Collaboration Communities 

 

278 

Table 6. Results of HLM Estimation (OSS Product Popularity) 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Intercept 73.867*** 52.110*** 31.858*** 30.542*** 22.298*** 24.271*** 

 (2.455) (3.070) (2.998) (3.020) (3.085) (3.079) 

NoOfNonStars  1.699*** 1.582*** 1.607*** 1.598*** 1.766*** 
  (0.018) (0.019) (0.019) (0.019) (0.020) 

ProjTenure  -3.944** -1.407 -1.065 -2.411 3.587** 
  (1.293) (1.270) (1.273) (1.271) (1.358) 

OwnTenure  0.095 -3.097** -3.437*** -2.816** -2.876** 
  (1.006) (0.983) (0.987) (0.983) (1.012) 

AveYrCont  -0.007** -0.009** -0.008** -0.008** -0.006* 
  (0.003) (0.003) (0.003) (0.003) (0.003) 

TotYrCont  0.004*** 0.005*** 0.004*** 0.004*** 0.003*** 
  (0.001) (0.001) (0.001) (0.001) (0.001) 

OwnType  65.348*** 65.700*** 65.282*** 62.092*** 39.584*** 
  (5.347) (5.132) (5.158) (5.127) (5.294) 

ProjDyn  0.326*** 0.264*** 0.261*** 0.237** 0.121 
  (0.080) (0.076) (0.077) (0.076) (0.077) 

IssOpen  0.166*** 0.095*** 0.099*** 0.089*** 0.059*** 
  (0.017) (0.017) (0.017) (0.018) (0.018) 

NoOfStars   67.676*** 77.233*** 111.071*** 100.373*** 
   (1.842) (2.293) (3.686) (3.926) 

NoOfStars2    -2.983*** -5.152*** -4.759*** 
    (0.401) (0.522) (0.590) 

PropOfStarCont     -107.483*** -155.986*** 
     (11.417) (11.801) 

NoOfStars ×      15.043 18.112 

PropOfStarCont     (15.769) (17.236) 

NoOfStars2 ×      7.636** 9.904* 

PropOfStarCont     (2.802) (3.911) 

NoOfStars ×       -15.349*** 

ProjTenure      (1.686) 

NoOfStars ×       -1.961 

OwnTenure      (1.061) 

NoOfStars ×       77.978*** 

OwnType      (5.489) 

NoOfStars ×       1.446*** 

ProjDyn      (0.131) 

NoOfStars2 ×       -1.050*** 

ProjTenure      (0.215) 

NoOfStars2 ×       -1.235*** 

OwnTenure      (0.175) 

NoOfStars2 ×       -3.435* 

OwnType      (1.433) 

NoOfStars2 ×       -0.378*** 

ProjDyn      (0.032) 

Deviance  

(-2 log likelihood) 
1232581 1219069 1217800 1217747 1217523 1216346 

Deviance difference  

(∆ Dev) 
 13512*** 1269*** 53.7*** 223.3*** 1177.6*** 

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at level 2. Deviation differences were calculated 

as the difference between the current model and the previous model, i.e., ∆ D2=D2-D1 and ∆ D5=D5-D4. The significance of difference was 
tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors 

in parentheses.  
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H4 posited that the proportion of contributions by star 

contributors moderates the relationship between the 

number of star contributors and artifact popularity, such 

that an increase in the proportion of star contributions 

strengthens the effect on artifact popularity. Contrary to 

our expectations, Model 5 of Table 6 reveals a 

statistically significant and positive coefficient for the 

interaction term NoOfStars2 × PropOfStarCont (β = 

7.636, p < 0.01), indicating that a higher proportion of 

star contributions weakens rather than strengthens the 

relationship. Therefore, H4 is not supported. This 

weakening effect is visually depicted in Panel (b) of 

Appendix Figure A3. Theoretically, this empirical result 

suggests that a disproportionate proportion of 

contributions attributed to star contributors does not 

necessarily provide a consequential negative signal 

related to vulnerabilities associated with attrition, 

contributor stress, resource limitations, and the 

homogeneity of contributions.  

H5 proposed that the level of environmental dynamism 

moderates the relationship between the number of star 

contributors and artifact quality, such that increased 

environmental dynamism strengthens the inverted U-

shaped relationship. We tested this hypothesis using a 

cross-level interaction analysis. The results in Model 6 

of Table 5 reveal a statistically significant and negative 

coefficient for the interaction term NoOfStars2 × 

ProjDyn (β = -0.187, p < 0.001), indicating that higher 

environmental dynamism strengthens the curvilinear 

effect on artifact quality. Therefore, H5 is supported. 

This strengthening effect is visually depicted in Panel 

(a) of Appendix Figure A4. 

H6 posited that the level of environmental dynamism 

moderates the relationship between the number of star 

contributors and artifact popularity, such that increased 

environmental dynamism strengthens the inverted U-

shaped relationship. Consistent with H5, we tested this 

hypothesis using a cross-level interaction analysis. The 

results in Model 6 of Table 6 reveal a statistically 

significant and negative coefficient for the interaction 

term NoOfStars2 × ProjDyn (β = -0.378, p < 0.001), 

indicating that higher project dynamism strengthens the 

curvilinear effect on artifact popularity. Therefore, H6 is 

supported. This strengthening effect is visually depicted 

in Panel (b) of Appendix Figure A4. 

Table 7 provides a concise summary of our main 

findings, alongside their corresponding theoretical 

justifications. 

5.2 Robustness Analyses 

We conducted several robustness checks to ensure the 

reliability of our findings. Given the panel structure of 

our data, the potential for omitted variable bias is 

mitigated (Wooldridge, 2010). 

5.2.1 Measurement Errors 

Measurement error can arise when the 

operationalization of variables does not accurately 

capture their true values. To mitigate this concern, we 

demonstrate the robustness of our results by employing 

alternative measures and operationalizations for our 

key variables. First, while our star contributor 

identification criteria, based on prior literature (Hess & 

Rothaermel, 2011; Rothaermel & Hess, 2007), utilized 

a threshold of 3 standard deviations above the mean 

contribution, we acknowledge that this may be overly 

restrictive, potentially excluding high contributors who 

do not meet this criterion. Therefore, we relaxed the 

threshold to 1 standard deviation above the mean 

contribution. The results, presented in Models 1 

through 3 (for project quality) and Models 4 through 6 

(for project popularity) in Appendix Table A1, remain 

qualitatively consistent with our main findings. Second, 

our primary sampling strategy included projects with at 

least two contributors per year. Recognizing that this 

threshold might bias the identification of star 

contributors, we extended the criterion to include only 

projects with at least five contributors per year, a 

threshold consistent with prior OSS studies (e.g., 

Daniel et al., 2013). The results, presented in Models 1 

through 3 (project quality) and Models 4 through 6 

(project popularity) in Appendix Table A2, are 

qualitatively consistent with our main findings. 

5.2.2 Alternate Measures for OSS Product 

Quality and Popularity 

In our primary analysis, project quality was 

operationalized using the number of issues closed. For 

this robustness check, we employed the number of 

bugs/issues reported in an OSS project as an alternative 

proxy for project quality (Setia et al., 2012). This 

approach assumes that a project with zero or a 

relatively low number of reported issues indicates 

higher quality than a project with a high number of 

reported issues. The results, presented in Models 1 

through 3 of Appendix Table A3, revealed a U-shaped 

relationship between the number of star contributors 

and the number of reported issues. Specifically, the 

number of reported issues was lowest at a moderate 

number of star contributors, corroborating our main 

findings regarding OSS project quality. Similarly, in 

our primary analysis, project popularity was 

operationalized using the number of bookmarks 

received. For this robustness check, we utilized the 

number of times a project was forked (i.e., making a 

copy of the project for study, editing, or contribution) 

as an alternative measure of project popularity. The 

results, presented in Models 4 through 6 of Appendix 

Table A3, remain qualitatively consistent with our 

main findings. 
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Table 7. Summary of Main Findings and Theoretical Justification 

Hypotheses Theoretical and empirical justification 

H1: The number of star contributors 

contributing to an online open collaboration 

community artifact is curvilinearly related to 

the artifact’s quality, such that a moderate 

number of star contributors correlates with 

the highest quality (inverted U-shaped 

relationship). 

• Optimal levels of star contributors provide a balance between 

coordination cost, redundancy reduction, and heterogeneity of ideas, and 

a balance between available resources and work. 

• Model 4 in Table 5 shows a negative and significant coefficient for the 

squared term NoOfStar 2 (β = -1.466, p < 0.001). 

H2: The number of star contributors 

contributing to an online open collaboration 

community artifact is curvilinearly related to 

the artifact’s popularity, such that a moderate 

number of star contributors correlates with 

the highest increase in popularity (inverted 

U-shaped relationship). 

• Optimal levels of star contributors attract OCC members, allow 

reciprocity, identify resourceful individuals to associate with, enjoy 

significant followership, and underscore the activeness of the artifact to 

attract OCC members. 

• Model 4 of Table 6 shows negative and significant coefficients for the 

squared term NoOfStars2 (β = -2.983, p < 0.001). 

H3: The relative proportion of the star 

contributors’ contributions moderates the 

relationship between the number of star 

contributors and the artifact’s quality, such 

that an increase in the relative proportion of 

their contributions strengthens the effect on 

artifact quality (i.e., the curve is more 

pronounced). 

• Proportion of star contributors’ contributions at an optimal threshold 

supports coordination, reciprocity, skill-task match, and influences peers’ 

productivity.  

• Model 5 of Table 5 shows a significant and negative coefficient for the 

term NoOfStars2 × PropOfStarCont (β = -1.413, p < 0.001), indicating 

that the proportion of total contribution made by stars strengthens the 

relationship. 

H4: The relative proportion of star 

contributors’ contributions moderates the 

relationship between the number of star 

contributors and artifact popularity, such that 

an increase in the relative proportion of their 

contributions strengthens the effect on 

artifact popularity (i.e., the curve is more 

pronounced). 

• Proportion of star contributors’ contributions at optimal threshold 

supports associating with resourceful individuals and draws community 

attention.  

• Model 5 of Table 6 shows a significant but positive coefficient for the 

term NoOfStars2 × PropOfStarCont (β = 7.636, p < 0.01), indicating that 

the proportion of total contribution made by stars weakens the 

relationship. 

H5: The level of OCC artifact environmental 

dynamism moderates the relationship 

between the number of star contributors and 

artifact quality, such that an increase in the 

OCC artifact environmental dynamism 

strengthens the effect on artifact quality (i.e., 

the curve is more pronounced). 

• Increase in environmental dynamism is supported by star contributors’ 

knowledge of norms and rules, efficiency, and reduced coordination 

costs.  

• Model 6 of Table 5 shows a significant and negative coefficient for the 

term NoOfStars2 × ProjDyn (β = -0.187, p < 0.001), indicating that 

environmental dynamism strengthens the relationship. 

H6: The level of OCC artifact environmental 

dynamism for an artifact moderates the 

relationship between the number of star 

contributors and artifact popularity, such that 

an increase in the OCC artifact 

environmental dynamism strengthens the 

effect on artifact popularity (i.e., the curve is 

more pronounced). 

• Increase in environmental dynamism is supported by star contributors’ 

influence on artifact success, positive synergy, and contribution metrics. 

• Model 6 of Table 6 shows a negative and significant coefficient for the 

term NoOfStars2 × ProjDyn (β = -0.378, p < 0.001), indicating that 

project dynamism strengthens the relationship. 

5.2.3 Accounting for Endogeneity 

To address potential endogeneity concerns, specifically 

Level 2 (cross-level) endogeneity, where the random 

intercept may be correlated with a Level 1 independent 

variable, we utilized the endogeneity-robust Mundlak 

approach (Mundlak, 1978) by incorporating correction 

terms. Mundlak’s approach involves including the 

project-level means of time-varying covariates in the 

HLM. This helps control for unobserved heterogeneity 

that may correlate with our key independent variables, 

and it separates within-project variation from between-

project variation (Snijders & Berkhof, 2008), thereby 

mitigating potential endogeneity. The results, presented 

in Models 1 through 3 (for project quality) and Models 

4 through 6 (for project popularity) of Appendix Table 

A4, remain consistent with our main findings. 
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5.2.4 Falsification Test 

To rule out the possibility of spurious correlations in our 

HLM results, we conducted a falsification check. This 

check examined the hypothesized relationships between 

the number of star contributors and the dependent 

variables (project quality and popularity) using 

reshuffled time periods. Specifically, we randomly 

shuffled the dependent variable entries for each project, 

disrupting their chronological order and thus 

misaligning them with their corresponding independent 

and control variable entries. If significant estimates 

supporting our hypothesized relationships were 

observed in this randomized, non-chronological data, it 

would suggest spurious correlations. However, the 

results of our falsification tests, presented in Models 1 

through 3 (for project quality) and Models 4 through 6 

(for project popularity) of Appendix Table A5, do not 

support our hypotheses and are inconsistent with our 

main analyses. This indicates that our HLM results are 

unlikely to have been driven by spurious correlations. 

6 Discussion 

6.1 Theoretical Contributions 

This study makes three theoretical contributions. First, 

this study contributes to the growing interdisciplinary 

research on the role and impact of star contributors in 

collaborative work settings. Existing research has 

mostly focused on their role and effect in traditional 

offline organizational work settings (Call et al., 2021; 

Hess & Rothaermel, 2011; Taylor & Bendickson, 2021), 

where individuals’ compensation and work are managed 

by employers, and their contributions are governed by 

organizational rules. Our findings build on and extend 

the literature on the role of stars by showing their impact 

in non-traditional online self-organizing work settings, 

where the boundaries are more fluid, individual 

contributors are unpaid and work on their own terms, 

and there are often no organizationally imposed rules. 

Also, limited research exists on the effect of the relative 

proportion of stars’ contributions while recognizing how 

the disparity in contributions within a group affects 

work outcomes (Daniel et al., 2013). This research is 

one of the first to show that disparity in contributions 

arising from the relative proportion of contributions 

made by star contributors in OCC artifact moderates the 

relationship between star contributors’ contributions 

and artifacts’ quality and popularity. Prior studies have 

maintained a fixed proportion (usually based on the 80-

20 rule) between star and non-star contributors (e.g., Lin 

and Wang, 2020; Setia et al., 2012). Our findings 

indicate that while the relationship between star 

contributors’ contributions and OCC artifact quality is 

stronger when stars contribute a higher proportion of the 

overall efforts in the artifact, the relationship between 

star contributors’ contributions and OCC artifact 

popularity is weaker when stars contribute a higher 

proportion. 

Second, we contribute to research on OCC, particularly 

studies investigating how different categories of OCC 

participants affect key outcomes (Jarczyk et al., 2018; 

Lin & Wang, 2020; Setia et al., 2012). These studies 

have predominantly taken the core-periphery view in 

categorizing participants, where they identify the 

participant’s category by their network position 

(Dahlander & Frederiksen, 2012; Safadi et al., 2021) or 

a fixed contribution level (Lin & Wang, 2020; Setia et 

al., 2012). Although the core-periphery participant 

structure is important, we extend this literature by 

introducing the concept of the star contributor, a 

category of participant that, while not always present, 

can significantly reshape community dynamics. Star 

contributors’ recent and disproportionate contributions 

can drive significant improvements in artifact quality 

and influence its popularity. We show that this category 

of contributor can affect OCC artifact quality and 

popularity in a nonlinear manner, highlighting the 

importance of considering this distinct group in OCC 

research. 

Finally, we extend the literature by theorizing the role of 

the OCC artifact environment on OCC outcomes. Prior 

research has shown that the characteristics of OCC 

environments align with the impact of different 

categories of contributors. For instance, Lin and Wang 

(2020) and Setia et al. (2012) showed that peripheral 

contributors are most impactful on established or 

matured OCC artifacts. Our research contributes by 

highlighting that the effect of star contributors is more 

pronounced in dynamic environments, which are 

characterized by a high rate of change and uncertainty. 

In such environments, the demand for contributions is 

more intense, as the community grapples with new 

information, challenges, and opportunities. 

Consequently, the impact of occasional contributions is 

diminished, while the focused and sustained efforts of 

star contributors become critical for driving artifact 

development and success. 

6.2 Implications for Online Collaboration 

Communities 

Our findings have three implications for research on 

online collaboration communities. First, earlier studies 

on OCCs identify intrinsic (e.g., happiness, sense of 

community) (Kankanhalli et al., 2005; Wasko & Faraj, 

2005) and extrinsic (Lerner & Tirole, 2002; Xu et al., 

2020) motivations to contribute. This research 

complements these streams of research to advance 

research focusing on OCC members’ strategic behavior 

(e.g., association with resourceful OCC members) to 

satisfy their participation objectives. Strategic 

participation highlights the important role of signals 

emitted, received, and perceived by OCC members and 

artifacts. Second, a prevalent view in research on OCCs 
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is that contributions are essential for sustaining OCC 

artifacts (Butler, 2001; Chengalur-Smith et al., 2010; 

Mindel et al., 2018). Our findings indicate that while star 

contributors’ contributions positively affect an artifact’s 

quality and popularity, this effect is moderated by the 

relative proportion of star contributors’ contributions. 

These findings also offer opportunities for future 

research related to the impact of the relative proportion 

of star contributors’ contributions on artifact takeoff 

(Setia et al., 2020), the impact of external factors (e.g., 

nudge by OCC network members) (Qian & Jain, 2024), 

and exogenous shocks (Kummer et al., 2020; Malgonde 

et al., 2023). Finally, this research extends the core-

periphery distinction adopted in prior work using a data-

driven approach that accounts for the OCC artifact’s 

fluidity (Faraj et al., 2011). Prior research suggests that 

peripheral contributors tend to be more impactful in the 

later stages of the OCC artifact (Setia et al., 2012). Our 

findings complement this by highlighting the role of 

environmental dynamism.  

This research also extends the theory on collective 

action (Oliver & Marwell, 1988). Specifically, the 

theory of collective action suggests that a small group 

of contributors from a relatively larger group is 

sufficient to develop the critical mass required to 

instigate broader contributions. However, our findings 

suggest that the proportion of contributors by the initial 

group of contributors may negatively impact artifacts’ 

quality and popularity, with a downstream effect on 

community participation. 

6.3 Managerial Implications 

We note two managerial implications of this research. 

First, our results suggest a positive effect of the 

proportion of star contributors’ contributions on artifact 

quality but a negative effect on artifact popularity. 

Consequently, a key implication for OCC artifact 

managers and platform owners is how to devise policies 

(e.g., throttle type of contributions), incentive 

mechanisms (e.g., rewards for critical vulnerabilities), 

and platform governance mechanisms (e.g., 

recommender systems) to manage (e.g., identify 

alternate contributors, recommend alternate artifacts) 

the proportion of star contributors’ contributions. 

Importantly, devised mechanisms are part of a portfolio 

of mechanisms that are available to artifact managers. 

Second, we discuss the moderating role of the OCC 

artifact’s environmental dynamism. For OCC artifact 

managers, the use of action levers that alter signals of 

dynamism is important. For example, OSS projects may 

alter their schedule of releases to signal a shift in 

dynamism. Similarly, question-and-answer-based 

artifacts may alter administrative edits to signal reduced 

dynamism. By strategically adjusting these signals, 

OCC artifact managers can influence the level and 

breadth of participation, ultimately affecting the 

artifact’s quality and popularity. 

6.4 Limitations and Future Research 

Directions 

Three limitations of this study offer opportunities for 

future studies. First, while based on existing literature, 

defining star contributors solely by contribution volume 

(three standard deviations above the mean) may be a 

limitation. For example, Asgari et al. (2021) suggested 

that star contributors might be identified not only by their 

performance (contributions) but also by a combination of 

performance, status, visibility, and social capital. Hence, 

future studies could consider expanding the 

operationalization of star contributors. Second, our study 

sample was drawn exclusively from GitHub, focusing on 

open source software projects. Because OCCs and 

participant contribution behaviors can differ significantly 

across domains and platforms, the generalizability of our 

findings may be limited. Future studies could extend this 

inquiry to other domains and platforms. Finally, although 

our study focuses on stars, future research could explore 

the role of non-stars in artifacts’ quality and popularity 

using our conceptualization. 

In this research, we focus on star contributors and the 

effect of their contributions on OCC artifacts’ quality 

and popularity. This research complements existing 

studies on factors contributing to OCC artifacts’ success 

and extends prior work by focusing on the critical yet 

under-researched role of star contributors. Our findings 

suggest that star contributors play a significant role in 

driving the success of OCC artifacts. 

Acknowledgements 

The authors thank the senior editor and the anonymous 

reviewers for providing constructive guidance and 

comments.



Journal of the Association for Information Systems 

283 

References 

Aguinis, H., & O’Boyle, E., Jr. (2014). Star performers in 

twenty‐first century organizations. Personnel 

Psychology, 67(2), 313-350.  

Ahuja, G. (2000). Collaboration networks, structural 

holes, and innovation: A longitudinal study. 

Administrative Science Quarterly, 45, 425-455.  

Asgari, E., Hunt, R. A., Lerner, D. A., Townsend, D. M., 

Hayward, M. L., & Kiefer, K. (2021). Red giants 

or black holes? The antecedent conditions and 

multilevel impacts of star performers. Academy of 

Management Annals, 15(1), 223-265.  

Baba, Y., Shichijo, N., & Sedita, S. R. (2009). How do 

collaborations with universities affect firms’ 

innovative performance? The role of “Pasteur 

scientists” in the advanced materials field. 

Research Policy, 38(5), 756-764.  

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., & 

Slaughter, S. (2003). Is “internet-speed” software 

development different? IEEE Software, 20(6), 70-

77.  

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E., & 

Damian, D. (2016). Understanding the popular 

users: Following, affiliation influence and 

leadership on GitHub. Information and Software 

Technology, 70, 30-39.  

Bockstedt, J., Druehl, C., & Mishra, A. (2022). Incentives 

and stars: Competition in innovation contests with 

participant and submission visibility. Production 

and Operations Management, 31(3), 1372-1393.  

Brooks, F. P., Jr. (1987). No silver bullet essence and 

accidents of software engineering. Computer, 

20(4), 10-19.  

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. 

D., Dhariwal, P., . . . Askell, A. (2020). Language 

models are few-shot learners. Proceedings of the 

34th International Conference on Neural 

Information Processing Systems (pp. 877-1901).  

Burke, M. A., Fournier, G. M., & Prasad, K. (2007). The 

diffusion of a medical innovation: Is success in the 

stars? Southern Economic Journal, 73(3), 588-

603.  

Burtch, G., He, Q., Hong, Y., & Lee, D. (2022). How do 

peer awards motivate creative content? 

Experimental evidence from Reddit. Management 

Science, 68(5), 3488-3506.  

Butler, B. S. (2001). Membership size, communication 

activity, and sustainability: A resource-based 

model of online social structures. Information 

Systems Research, 12(4), 346-362.  

Call, M. L., Campbell, E. M., Dunford, B. B., Boswell, 

W. R., & Boss, R. W. (2021). Shining with the 

stars? Unearthing how group star proportion 

shapes non‐star performance. Personnel 

Psychology, 74(3), 543-572.  

Campbell, E. M. (2014). Effects sparked by shining stars: 

Consequences earned and posed by high 

performers at work [Doctoral dissertation] 

University of Maryland.  

  Chengalur-Smith, I., Sidorova, A., & Daniel, S. L. 

(2010). Sustainability of free/libre open source 

projects: A longitudinal study. Journal of the 

Association for Information Systems, 11(11).  

Colazo, J., & Fang, Y. (2010). Following the sun: 

Temporal dispersion and performance in open 

source software project teams. Journal of the 

Association for Information Systems, 11(11), 684-

707.  

Cram, W. A., Brohman, K., & Gallupe, R. B. (2016). 

Information systems control: A review and 

framework for emerging information systems 

processes. Journal of Association for Information 

Systems, 17(4), 216-266.  

Dahlander, L., & Frederiksen, L. (2012). The core and 

cosmopolitans: A relational view of innovation in 

user communities. Organization Science, 23(4), 

988-1007.  

Dahlander, L., & O’Mahony, S. (2011). Progressing to 

the center: Coordinating project work. 

Organization Science, 22(4), 961-979.  

Daniel, S., Agarwal, R., & Stewart, K. J. (2013). The 

effects of diversity in global, distributed 

collectives: A study of open source project 

success. Information Systems Research, 24(2), 

312-333.  

Falk, A., & Ichino, A. (2006). Clean evidence on peer 

effects. Journal of Labor Economics, 24(1), 39-57.  

Faraj, S., Jarvenpaa, S. L., & Majchrzak, A. (2011). 

Knowledge collaboration in online communities. 

Organization Science, 22(5), 1224-1239.  

Faraj, S., Kudaravalli, S., & Wasko, M. (2015). Leading 

collaboration in online communities. MIS 

Quarterly, 39(2), 393-412.  

Faraj, S., & Sproull, L. (2000). Coordinating expertise in 

software development teams. Management 

Science, 46(12), 1554-1568.  

Faraj, S., von Krogh, G., Monteiro, E., & Lakhani, K. R. 

(2016). Special section introduction—Online 

community as space for knowledge flows. 

Information Systems Research, 27(4), 668-684.  

Feller, J., Finnegan, P., Fitzgerald, B., & Hayes, J. (2008). 

From peer production to productization: A study 



Star Contributors in Online Collaboration Communities 

 

284 

of socially enabled business exchanges in open 

source service networks. Information Systems 

Research, 19(4), 475-493.  

Foerderer, J., Gutt, D., & Greenwood, B. (2023). Star 

wars: An empirical investigation of star performer 

turnover and content supply on multi-sided 

streaming platform SSRN. https://papers.ssrn.

com/sol3/papers.cfm?abstract_id=4321163    

Forte, A., & Lampe, C. (2013). Defining, understanding, 

and supporting open collaboration: Lessons from 

the literature. American Behavioral Scientist, 

57(5), 535-547.  

Grewal, R., Lilien, G. L., & Mallapragada, G. (2006). 

Location, location, location: How network 

embeddedness affects project success in open 

source systems. Management Science, 52(7), 

1043-1056.  

Grigoriou, K., & Rothaermel, F. T. (2014). Structural 

microfoundations of innovation: The role of 

relational stars. Journal of Management, 40(2), 

586-615.  

Groysberg, B., Lee, L.-E., & Nanda, A. (2008). Can they 

take it with them? The portability of star 

knowledge workers’ performance. Management 

Science, 54(7), 1213-1230.  

Groysberg, B., Polzer, J. T., & Elfenbein, H. A. (2011). 

Too many cooks spoil the broth: How high-status 

individuals decrease group effectiveness. 

Organization Science, 22(3), 722-737.  

Hann, I.-H., Roberts, J., & Slaughter, S. A. (2013). All are 

not equal: An examination of the economic 

returns to different forms of participation in open 

source software communities. Information 

Systems Research, 24(3), 520-538.  

Harris, M. L., Collins, R. W., & Hevner, A. R. (2009). 

Control of flexible software development under 

uncertainty. Information Systems Research, 20(3), 

400-419.  

Hess, A. M., & Rothaermel, F. T. (2011). When are assets 

complementary? Star scientists, strategic 

alliances, and innovation in the pharmaceutical 

industry. Strategic Management Journal, 32(8), 

895-909.  

Hofmann, D. A. (1997). An overview of the logic and 

rationale of hierarchical linear models. Journal of 

Management, 23(6), 723-744.  

Huang, P., & Zhang, Z. (2016). Participation in open 

knowledge communities and job-hopping: 

Evidence from enterprise software. MIS 

Quarterly, 40(3), 785-806.  

Ichniowski, C., & Preston, A. (2014). Do star performers 

produce more stars? Peer effects and learning in 

elite teams [NBER Working Paper 20478]. 

NBER. http://www.nber.org/papers/w20478  

Jarczyk, O., Jaroszewicz, S., Wierzbicki, A., Pawlak, K., 

& Jankowski-Lorek, M. (2018). Surgical teams on 

GitHub: Modeling performance of GitHub project 

development processes. Information and Software 

Technology, 100, 32-46.  

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P. S., & Zhang, 

L. (2017). Why and how developers fork what 

from whom in GitHub. Empirical Software 

Engineering, 22(1), 547-578.  

Jiang, Q., Tan, C.-H., Sia, C. L., & Wei, K.-K. (2019). 

Followership in an open-source software project 

and its significance in code reuse. MIS Quarterly, 

43(4), 1303-1319.  

Jones, Q., Ravid, G., & Rafaeli, S. (2004). Information 

overload and the message dynamics of online 

interaction spaces: A theoretical model and 

empirical exploration. Information Systems 

Research, 15(2), 194-210.  

Kane, G., & Ransbotham, S. (2016). Content as 

community regulator: The recursive relationship 

between consumption and contribution in open 

collaboration communities. Organization 

Science, 27(5), 1258-1274.  

Kankanhalli, A., Tan, B. C. Y., & Wei, K. (2005). 

Contributing knowledge to electronic knowledge 

repositories: An empirical investigation. MIS 

Quarterly, 29(1), 113-143.  

Kankanhalli, A., Zuiderwijk, A., & Tayi, G. K. (2017). 

Open innovation in the public sector: A research 

agenda. Government Information Quarterly, 

34(1), 84-89.  

Kreft, I. G., Kreft, I., & de Leeuw, J. (1998). Introducing 

multilevel modeling. SAGE.  

Kuk, G. (2006). Strategic interaction and knowledge 

sharing in the KDE developer mailing list. 

Management Science, 52(7), 1031-1042.  

Kummer, M., Slivko, O., & Zhang, X. (2020). 

Unemployment and digital public goods 

contribution. Information Systems Research, 

31(3), 801-819.  

Lakhani, K. R., & Von Hippel, E. (2003). How open 

source software works: “free” user-to-user 

assistance. Research Policy, 32, 923-943.  

Lam, C. K., Van der Vegt, G. S., Walter, F., & Huang, X. 

(2011). Harming high performers: A social 

comparison perspective on interpersonal harming 

in work teams. Journal of Applied Psychology, 

96(3), 588-601.  

Lee, M. J., Ferwerda, B., Choi, J., Hahn, J., Moon, J. Y., 

& Kim, J. (2013). GitHub developers use 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4321163
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4321163
http://www.nber.org/papers/w20478


Journal of the Association for Information Systems 

285 

rockstars to overcome overflow of news. CHI’13 

Extended Abstracts on Human Factors in 

Computing Systems (pp. 133-138).  

Lerner, J., & Tirole, J. (2002). Some simple economics of 

open source. The Journal of Industrial 

Economics, 50(2), 197-234.  

Lerner, J., & Tirole, J. (2005). The economics of 

technology sharing: Open source and beyond. 

Journal of Economic Perspectives, 19(2), 99-120.  

Levina, N., & Arriaga, M. (2014). Distinction and status 

production on user-generated content platforms: 

Using Bourdieu’s theory of cultural production to 

understand social dynamics in online fields. 

Information Systems Research, 25(3), 468-488.  

Levine, S. S., & Prietula, M. J. (2014). Open collaboration 

for innovation: Principles and performance. 

Organization Science, 25(5), 1414-1433.  

Lin, Y., & Chen, Y. (2018). Do less active participants 

make active participants more active? An 

examination of Chinese Wikipedia. Decision 

support systems, 114, 103-113.  

Lin, Y., & Wang, C. (2020). Wisdom of crowds: The 

effect of participant composition and contribution 

behavior on Wikipedia article quality. Journal of 

Knowledge Management, 24(2), 324-345.  

Malgonde, O. S., Saldanha, T. J., & Mithas, S. (2023). 

Resilience in the open source software 

community: How pandemic and unemployment 

shocks influence contributions to others’ and 

one’s own projects. MIS Quarterly, 47(1), 361-

390.  

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). 

A control theory perspective on agile 

methodology use and changing user requirements. 

Information Systems Research, 20(3), 377-399.  

Mas, A., & Moretti, E. (2009). Peers at work. American 

Economic Review, 99(1), 112-145.  

Medappa, P. K., & Srivastava, S. C. (2019). Does 

superposition influence the success of FLOSS 

projects? An examination of open-source 

software development by organizations and 

individuals. Information Systems Research, 30(3), 

764-786.  

Mindel, V., Mathiassen, L., & Rai, A. (2018). The 

sustainability of polycentric information 

commons. MIS Quarterly, 42(2), 607-632.  

Moqri, M., Mei, X., Qiu, L., & Bandyopadhyay, S. 

(2018). Effect of “following” on contributions to 

open source communities. Journal of 

Management Information Systems, 35(4), 1188-

1217.  

Mundlak, Y. (1978). On the pooling of cross-section and 

time-series data. Econometrica, 46(1), 69-85.  

Oliver, P. E., & Marwell, G. (1988). The paradox of 

group size in collective action: A theory of the 

critical mass. II. American Sociological Review, 

53(1), 1-8.  

Overbeck, J. R., Correll, J., & Park, B. (2005). Internal 

status sorting in groups: The problem of too many 

stars. In M. C. Thomas-Hunt (Eds.), Status and 

groups (169-199). Emerald.  

Overflow, S. (2023). Temporary policy: Generative AI 

(eg, ChatGPT) is banned. Stackoverflow Meta. 

https://meta.stackoverflow.com/questions/42183

1/policy-generative-ai-e-g-chatgpt-is-banned   . 

Peng, G. (2019). Co-membership, networks ties, and 

knowledge flow: An empirical investigation 

controlling for alternative mechanisms. Decision 

Support Systems, 118, 83-90.  

Qian, K., & Jain, S. (2024). Digital content creation: An 

analysis of the impact of recommendation 

systems. Management Science.70(12), 8217-9119 

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical 

linear models: Applications and data analysis 

methods (Vol. 1). SAGE.  

Rothaermel, F. T., & Hess, A. M. (2007). Building 

dynamic capabilities: Innovation driven by 

individual-, firm-, and network-level effects. 

Organization Science, 18(6), 898-921.  

Rullani, F., & Haefliger, S. (2013). The periphery on 

stage: The intra-organizational dynamics in online 

communities of creation. Research Policy, 42(4), 

941-953.  

Safadi, H., Johnson, S. L., & Faraj, S. (2021). Who 

contributes knowledge? Core-periphery tension in 

online innovation communities. Organization 

Science, 32(3), 752-775.  

Setia, P., Bayus, B., & Rajagopalan, B. (2020). The 

takeoff of open source software: A signaling 

perspective based on community activities. MIS 

Quarterly, 44(3), 1439-1458.  

Setia, P., Rajagopalan, B., Sambamurthy, V., & 

Calantone, R. (2012). How peripheral developers 

contribute to open-source software development. 

Information Systems Research, 23(1), 144-163.  

Singh, P. V., Tan, Y., & Mookerjee, V. (2011). Network 

effects: The influence of structural capital on open 

source project success. MIS Quarterly, 35(4), 813-

829.  

Snijders, T. A., & Berkhof, J. (2008). Diagnostic checks 

for multilevel models. In J. de Leeuw & E. Meijer 

(Eds.), Handbook of multilevel analysis (pp. 141-

175). Springer.  



Star Contributors in Online Collaboration Communities 

 

286 

Taylor, E. C., & Bendickson, J. S. (2021). Star 

performers, unit performance and unit turnover: A 

constructive replication. Human Resource 

Management Journal, 31(4), 977-994.  

Von Krogh, G., Haefliger, S., Spaeth, S., & Wallin, M. 

(2012). Carrots and rainbows: Motivation and 

social practice in open source software 

development. MIS Quarterly, 36(2), 649-676.  

Wasko, M. M., & Faraj, S. (2005). Why should I share? 

Examining social capital and knowledge 

contribution in electronic networks of practice. 

MIS Quarterly, 29(1), 35-57.  

Wasko, M. M., Teigland, R., & Faraj, S. (2009). The 

provision of online public goods: Examining 

social structure in an electronic network of 

practice. Decision Support Systems, 47(3), 254-

265.  

Weng, Q., & Soh, F. (2023). The influence of project 

initiators’ person-to-person followership on 

project popularity in open source communities: 

The role of reach and importance. The Journal of 

Strategic Information Systems, 32(2), 101771.  

Wooldridge, J. M. (2010). Econometric analysis of cross 

section and panel data. MIT Press.  

Wu, F., Wilkinson, D. M., & Huberman, B. A. (2009). 

Feedback loops of attention in peer production. 

Proceedings of the International Conference on 

Computational Science and Engineering,  

Xu, L., Nian, T., & Cabral, L. (2020). What makes geeks 

tick? A study of Stack Overflow careers. 

Management Science, 66(2), 587-604.  

Yang, Y., & Shi, M. (2011). Rise and fall of stars: 

Investigating the evolution of star status in 

professional team sports. International Journal of 

Research in Marketing, 28(4), 352-366.  

Ye, S., Viswanathan, S., & Hann, I.-H. (2018). The value 

of reciprocity in online barter markets: An 

empirical investigation. MIS Quarterly, 42(2), 

521-549.  

Zaheer, S., Albert, S., & Zaheer, A. (1999). Time scales 

and organizational theory. Academy of 

Management Review, 24(4), 725-741.  

Zhang, S., Singh, P. V., & Ghose, A. (2019). A structural 

analysis of the role of superstars in crowdsourcing 

contests. Information Systems Research, 30(1), 

15-33.  

 

 

 

 



Journal of the Association for Information Systems 

287 

Appendix  

 

Note: We collected data from GitHub from 2015-2019. First, we identified 1,512,861 unique projects with releases between 2015 and 2019. Second, 

we retained 498,014 unique projects that received contributions from at least two contributors. Third, we retained 41,201 projects with at least 4 
years of consistent panels. In other words, each project had either 4 or 5 years of panel data beginning either in 2015 or 2016. Finally, we retained 

21,456 projects with data on dependent, independent, and control variables. For example, we used project owner information such as account age 

and owner type (individual or organizational). We dropped projects where the owner account was deleted or owner information was incomplete or 
unavailable. 

 
Figure A1. Random Sample Selection 
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(a) Quality of OSS project 

 

(b) Popularity of OSS project 

 

Note: This figure shows the inverted U-shaped relationship between the number of star contributors and (a) the quality or (b) the popularity of the 
OSS project. In our context of open source software, quality was measured using issues closed for a focal open source software project (artifact). 

Similarly, popularity was measured using the number of open source platform users watching the focal project (artifact). From Panel (a), we note 

that the number of star contributors contributing to an online open collaboration community artifact is curvilinearly related to the artifact’s quality, 
such that a moderate number of star contributors is associated with the highest quality (inverted U-shaped relationship). From Panel (b), we note 

that the number of star contributors contributing to an online open collaboration community artifact is curvilinearly related to the artifact’s popularity, 

such that a moderate number of star contributors is associated with the highest increase in popularity (inverted U-shaped relationship). 

Figure A2. How Does the Number of Star Contributors Affect an Open Source Software Project’s Quality and 

Popularity? 
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(a) Quality of OSS project 

 

(b) Popularity of OSS project 

 

Note: This figure illustrates the moderating effect of the proportion of star contributors’ contributions on the relationship between the number of star 

contributors and the (a) quality or (b) popularity of the OSS project. From Panel (a), we note that the relative proportion of star contributors’ 

contributions moderates the relationship between the number of star contributors and the project’s quality, such that an increase in the relative 
proportion of their contributions strengthens the effect on project quality (i.e., the curve is more pronounced). From Panel (b), we note that the 

relative proportion of star contributors’ contributions moderates the relationship between the number of star contributors and project popularity, 

such that an increase in the relative proportion of their contributions diminishes the effect on project popularity (i.e., the curve flattens). For each 
panel, we show three levels (0.1, 0.3, and 0.5) of the proportion of star contributors’ contributions. In our OSS context of open source software, 

quality was measured using issues closed for a focal open source software project (artifact). Similarly, popularity was measured using the number 

of open source platform users watching the focal project (artifact). 

Figure A3. How Does the Relative Proportion of Contributions by Star Contributors Affect the Relationship 

Between the Number of Star Contributors and the Open Source Software Project’s Quality and Popularity? 
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(a) Quality of OSS project 

 

(b) Popularity of OSS project 

 

Note: This figure illustrates the moderating effect of the OSS project’s environmental dynamism on the relationship between the number of star 

contributors and the (a) quality or (b) popularity of the OSS project. From Panel (a), we note that the level of OSS project environmental dynamism 
moderates the relationship between the number of star contributors and project quality, such that an increase in the OSS project environmental 

dynamism strengthens the effect on project quality (i.e., the curve is more pronounced). From Panel (b), we note that the level of OSS project 

environmental dynamism for a project moderates the relationship between the number of star contributors and project popularity, such that an 
increase in the OSS project environmental dynamism strengthens the effect on project popularity (i.e., the curve is more pronounced). For each 

panel, we show three levels (-3, 3, and 9) of environmental dynamism. In our OSS context of open source software, quality was measured using 

issues closed for a focal open source software project (artifact). Similarly, popularity was measured using the number of open source platform users 

watching the focal project (artifact). 

Figure A4. How Does the Open Source Software Project’s Environmental Dynamism Affect the Relationship 

Between the Number of Star Contributors and the Open Source Software Project’s Quality and Popularity? 
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Table A1. Results of HLM Estimation With Star Contributors Operationalized as  

Contributors Whose Contributions Are 1 Standard Deviation Above the Mean  

Variables 
OSS project quality OSS project popularity 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

(Intercept) 14.226*** 13.406*** 16.068*** 25.788*** 26.087*** 35.766*** 

 (0.666) (0.680) (0.705) (3.325) (3.454) (3.449) 

NoOfNonStars 0.128*** 0.132*** 0.115*** 1.657*** 1.673*** 1.691*** 
 (0.003) (0.003) (0.003) (0.019) (0.019) (0.0190 

ProjTenure 0.672** 0.605** -0.589* -2.650* -3.392** 6.069*** 
 (0.219) (0.219) (0.259) (1.286) (1.287) (1.567) 

OwnTenure -0.367* -0.175 0.651*** -1.903 -1.799 2.515* 
 (0.179) (0.179) (0.192) (1.001) (1.001) (1.129) 

AveYrCont -0.007*** -0.007*** -0.004*** -0.007** -0.008** -0.002 
 (0.000) (0.000) (0.000) (0.003) (0.003) (0.003) 

TotYrCont 0.004*** 0.004*** 0.003*** 0.004*** 0.004*** 0.001 
 (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 

OwnType -1.732 -1.878 -1.896 72.800*** 73.152*** 38.705*** 
 (1.105) (1.105) (1.204) (5.276) (5.262) (5.834) 

ProjDyn 0.132*** 0.133*** 0.077*** 0.304*** 0.301*** -0.056 
 (0.016) (0.016) (0.017) (0.078) (0.078) (0.077) 

IssOpen 0.689*** 0.687*** 0.741*** 0.137*** 0.113*** 0.196*** 
 (0.002) (0.002) (0.002) (0.017) (0.018) (0.018) 

NoOfStars 2.413*** 2.625*** 0.089 20.444*** 19.886*** 8.246*** 
 (0.164) (0.199) (0.218) (1.124) (1.357) (1.545) 

NoOfStars2 -0.274*** -0.282*** -0.01 -0.259*** 0.071 1.132*** 
 (0.008) (0.010) (0.013) (0.052) (0.072) (0.090) 

PropOfStarCont  -7.656*** -4.273***  -11.637* -19.739*** 
  (0.766) (0.749)  (5.367) (5.529) 

NoOfStars × PropOfStarCont  11.786*** 11.662***  -15.218* -2.16 
  (0.868) (0.920)  (6.064) (6.607) 

NoOfStars2 × PropOfStarCont  -0.251*** -0.371***  3.429*** -0.106 

  (0.056) (0.092)  (0.387) (0.622) 

NoOfStars × ProjTenure   0.967***   -7.268*** 
   (0.121)   (0.734) 

NoOfStars × OwnTenure   -0.586***   -4.306*** 
   (0.076)   (0.485) 

NoOfStars × OwnType   -0.693   33.940*** 
   (0.393)   (2.704) 

NoOfStars × ProjDyn   0.323***   1.077*** 
   (0.008)   (0.051) 

NoOfStars2 × ProjTenure   -0.043***   0.250*** 
   (0.005)   (0.026) 

NoOfStars2 × OwnTenure   0.063***   0.224*** 
   (0.004)   (0.029) 

NoOfStars2 × OwnType   -0.118***   -1.775*** 
   (0.023)   (0.156) 

NoOfStars2 × ProjDyn   -0.043***   -0.118*** 
   (0.001)   (0.004) 

Deviance (-2 log likelihood) 896784.0 896586.1 889883.3 1218647.3 1218520.0 1216856.6 

Deviance difference (∆ Dev)  197.9*** 6702.8***  127.3*** 1663.4*** 

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at Level 2. Deviation differences were calculated 

as the difference between the current model and the previous model, i.e., ∆ D2 = D2-D1 and ∆ D5 = D5-D4. The significance of difference was 

tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors 
in parentheses. 
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Table A2. Results of HLM Estimation Using Projects with a Minimum of Five Contributors Per Year  

Variables 
OSS project quality OSS project popularity 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

(Intercept) 32.984*** 30.104*** 30.131*** 79.598*** 70.578*** 70.212*** 

 (1.694) (1.756) (1.788) (8.268) (8.771) (8.821) 

NoOfNonStars 0.150*** 0.157*** 0.185*** 1.629*** 1.629*** 1.823*** 
 (0.004) (0.004) (0.005) (0.029) (0.029) (0.031) 

ProjTenure 2.124*** 1.703** 1.520* -3.678 -5.368 8.748* 
 (0.558) (0.559) (0.633) (3.190) (3.196) (3.729) 

OwnTenure -1.136* -0.456 -0.309 -5.960* -5.268* -6.597* 
 (0.464) (0.466) (0.490) (2.559) (2.562) (2.758) 

AveYrCont 0.271*** 0.272*** 0.275*** -0.358*** -0.340*** -0.223** 
 (0.012) (0.012) (0.012) (0.084) (0.084) (0.083) 

TotYrCont 0.006*** 0.005*** 0.004*** 0.004*** 0.005*** 0.002 
 (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 

OwnType -9.077** -10.373*** -11.173*** 123.371*** 121.859*** 89.071*** 
 (2.860) (2.859) (3.033) (13.686) (13.650) (14.796) 

ProjDyn 0.953*** 0.953*** 0.643*** 2.049*** 1.990*** 1.163** 
 (0.079) (0.079) (0.084) (0.377) (0.375) (0.413) 

IssOpen 0.623*** 0.618*** 0.633*** 0.179*** 0.159*** 0.135*** 
 (0.004) (0.004) (0.004) (0.029) (0.029) (0.030) 

NoOfStars 9.076*** 10.612*** 8.441*** 66.889*** 83.376*** 81.255*** 
 (0.628) (1.026) (1.068) (4.101) (6.540) (6.873) 

NoOfStars2 -1.602*** -1.655*** -1.013*** -3.656*** -3.980*** -5.334*** 
 (0.094) (0.131) (0.142) (0.621) (0.848) (0.933) 

PropOfStarCont  -29.430*** -33.865***  -54.975** -100.444*** 
  (3.172) (3.302)  (20.698) (21.719) 

NoOfStars × PropOfStarCont  42.225*** 59.107***  -23.652 -6.12 
  (4.159) (4.535)  (27.451) (30.206) 

NoOfStars2 × PropOfStarCont  -0.075 -6.090***  14.938*** 16.248** 
  (0.678) (0.928)  (4.484) (6.233) 

NoOfStars × ProjTenure   0.312   -15.431*** 
   (0.464)   (3.116) 

NoOfStars × OwnTenure   0.059   -1.967 
   (0.284)   (1.892) 

NoOfStars × OwnType   3.152*   47.664*** 
   (1.524)   (10.191) 

NoOfStars × ProjDyn   0.649***   1.594*** 
   (0.035)   (0.233) 

NoOfStars2 × ProjTenure   -0.003   -1.289*** 
   (0.051)   (0.342) 

NoOfStars2 × OwnTenure   -0.133**   -1.073*** 
   (0.041)   (0.274) 

NoOfStars2 × OwnType   -1.842***   3.917 
   (0.337)   (2.266) 

NoOfStars2 × ProjDyn   -0.185***   -0.454*** 
   (0.008)   (0.051) 

Deviance  

(-2 log likelihood) 
378861.2 378639.0 378008.8 502809.0 502761.3 502309.5 

Deviance difference  

(∆ Dev) 
 222.2*** 630.2***  47.7*** 451.8*** 

Note: There are 33,924 observations at the periodic level that correspond with 7,706 projects at Level 2. Deviation differences were calculated 

as the difference between the current model and the previous model, i.e., ∆ D2 = D2-D1 and ∆ D5 = D5-D4. The significance of difference was 
tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors 
in parentheses. 
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Table A3. Results of HLM Estimation Using the Number of Issues Open and Fork Events as  

Alternative Measures for OSS Product Quality and Popularity, Respectively 

 
Project quality measure as issues open Project popularity as fork event 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

(Intercept) 12.598 *** 10.318 *** 9.595 *** 12.917*** 10.498*** 11.758*** 
 (0.637) (0.641) (0.615) (0.933) (0.944) (0.964) 

NoOfNonStars 0.381 *** 0.378 *** 0.346 *** 0.601*** 0.604*** 0.589*** 
 (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) 

ProjTenure -1.454 *** -2.014 *** 0.226 -0.284 -0.804* -0.603 
 (0.277) (0.273) (0.286) (0.356) (0.355) (0.377) 

OwnTenure -1.094 *** -0.833 *** -0.892 *** -0.206 0.092 0.849** 
 (0.212) (0.208) (0.208) (0.285) (0.284) (0.292) 

AveYrCont -0.031 *** -0.030 *** -0.032 *** -0.009*** -0.009*** -0.008*** 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

TotYrCont 0.019 *** 0.018 *** 0.019 *** 0.005*** 0.005*** 0.004*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

OwnType -2.342 * -2.910 ** -1.876 5.197** 4.273** 2.452 
 (1.085) (1.060) (1.057) (1.603) (1.586) (1.661) 

ProjDyn 0.127 *** 0.119 *** 0.105 *** 0.064** 0.057* 0.041 
 (0.016) (0.016) (0.015) (0.024) (0.024) (0.024) 

IssOpen    -0.024*** -0.037*** -0.020*** 

    (0.004) (0.004) (0.004) 

NoOfStars 21.064 *** 29.338 *** 38.105 *** 17.957*** 25.986*** 19.393*** 

 (0.513) (0.802) (0.841) (0.593) (0.991) (1.043) 

NoOfStars2 1.703 *** 2.093 *** 0.079 -1.702*** -1.637*** -0.185 

 (0.090) (0.115) (0.128) (0.103) (0.137) (0.152) 

PropOfStarCont  -34.302 *** -27.667 ***  -35.498*** -33.754*** 
  (2.508) (2.542)  (3.012) (3.109) 

NoOfStars × PropOfStarCont  -20.922 *** -68.830 ***  1.137 0.281 
  (3.493) (3.762)  (4.082) (4.422) 

NoOfStars2 xPropOfStarCont  18.439 *** 32.513 ***  10.994*** 11.197*** 
  (0.619) (0.854)  (0.720) (0.989) 

NoOfStars × ProjTenure   -5.891 ***   -1.071* 
   (0.373)   (0.425) 

NoOfStars × OwnTenure   -1.103 ***   -5.114*** 
   (0.233)   (0.270) 

NoOfStars × OwnType   1.499   4.022** 
   (1.203)   (1.402) 

NoOfStars × ProjDyn   -0.470 ***   0.388*** 
   (0.028)   (0.034) 

NoOfStars2 × ProjTenure   -0.283 ***   0.402*** 
   (0.048)   (0.054) 

NoOfStars2 × OwnTenure   -0.066   1.464*** 
   (0.039)   (0.044) 

NoOfStars2 × OwnType   -2.135 ***   2.193*** 
   (0.317)   (0.361) 

NoOfStars2 × ProjDyn   0.290 ***   -0.144*** 
   (0.007)   (0.008) 

Deviance (-2 log likelihood) 957056.1 954948.6 951035.4 988004.8 987176.0 985566.6 

Deviance difference (∆ Dev)  2107.5*** 3913.2***  828.8*** 1609.4*** 

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at Level 2. Deviation differences were calculated as 

the difference between the current model and the previous model, i.e., ∆ D2 = D2-D1 and ∆ D5 = D5-D4. The significance of difference was tested 

after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors in 
parentheses. 
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Table A4. Results for Estimation of Random Effects with Endogeneity Correction 

 
OSS Project quality OSS project popularity 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

(Intercept) -0.753 *** -1.017 *** -1.313 *** -13.569 *** -13.537 *** -8.434 ** 
 (0.149) (0.152) (0.156) (2.617) (2.628) (2.612) 
AveNoOfNonStars 0.138 *** 0.142 *** 0.129 *** -0.465 *** -0.452 *** -0.371 *** 
 (0.004) (0.004) (0.004) (0.053) (0.053) (0.053) 
ProjTenure 0.285 ** 0.404 *** 0.304 ** -2.859 * -2.507 * -0.050 
 (0.103) (0.104) (0.116) (1.128) (1.131) (1.217) 
OwnTenure -0.007 0.019 0.007 -1.246 -1.193 -0.255 
 (0.052) (0.052) (0.059) (0.837) (0.838) (0.865) 
AveYrCont 0.002 *** 0.002 *** 0.003 *** -0.028 *** -0.028 *** -0.028 *** 
 (0.000) (0.000) (0.000) (0.007) (0.007) (0.006) 
AveTotYrCont 0.001 *** 0.001 *** 0.000 *** 0.011 *** 0.011 *** 0.010 *** 
 (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 
OwnType 0.376 0.207 0.384 66.937 *** 66.547 *** 42.548 *** 
 (0.233) (0.234) (0.269) (4.152) (4.162) (4.311) 
ProjDyn 0.012 ** 0.012 ** -0.001 -0.027 -0.027 -0.099 
 (0.004) (0.004) (0.004) (0.065) (0.065) (0.066) 
AveIssOpen -0.183 *** -0.186 *** -0.173 *** 0.086 0.085 0.024 
 (0.004) (0.004) (0.004) (0.052) (0.052) (0.052) 
NoOfNonStars -0.002 0.001 0.036 *** 2.213 *** 2.214 *** 2.345 *** 
 (0.003) (0.003) (0.003) (0.050) (0.050) (0.050) 
YrCont -0.009 *** -0.008 *** -0.008 *** 0.023 *** 0.023 *** 0.027 *** 
 (0.000) (0.000) (0.000) (0.006) (0.006) (0.006) 
TotYrCont 0.003 *** 0.003 *** 0.003 *** -0.008 *** -0.008 *** -0.009 *** 
 (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 
IssOpen 0.873 *** 0.873 *** 0.872 *** 0.073 0.071 0.120 * 
 (0.003) (0.003) (0.003) (0.049) (0.049) (0.049) 
AveNoOfStars -3.956 *** 0.014 -0.892 2.287 22.039 ** -1.004 
 (0.456) (0.701) (0.703) (6.009) (7.294) (7.304) 
AveNoOfStars2 0.864 *** 0.503 *** 0.019 34.669 *** 33.028 *** 33.706 *** 
 (0.084) (0.095) (0.096) (1.166) (1.223) (1.222) 
AvePropOfStarCont  -25.331 -23.595  -685.602 * -566.305 
  (20.895) (20.712)  (321.073) (316.380) 
NoOfStars 3.384 *** -2.176 *** -3.211 *** 49.749 *** 29.355 *** 19.873 *** 
 (0.342) (0.619) (0.626) (2.438) (4.555) (4.695) 
NoOfStars2 -1.940 *** -1.368 *** -0.750 *** -9.595 *** -7.780 *** -8.834 *** 
 (0.059) (0.078) (0.083) (0.419) (0.584) (0.640) 
PropOfStarCont  1.016 -1.959  37.003 ** -23.013 
  (1.492) (1.508)  (12.655) (13.092) 
NoOfStars × PropOfStarCont  15.042 *** 25.501 ***  7.917 25.750 
  (1.623) (1.754)  (15.800) (17.083) 
NoOfStars2 xPropOfStarCont  -1.869 *** -1.601 ***  3.256 8.700 * 
  (0.317) (0.456)  (2.825) (3.864) 
NoOfStars × ProjTenure   0.568 **   -3.266 * 
   (0.198)   (1.649) 
NoOfStars × OwnTenure   -0.003   -3.148 ** 
   (0.104)   (1.020) 
NoOfStars × OwnType   -1.265 *   70.444 *** 
   (0.540)   (5.312) 
NoOfStars × ProjDyn   0.369 ***   1.307 *** 
   (0.011)   (0.124) 
NoOfStars2 × ProjTenure   -0.161 ***   -2.626 *** 
   (0.027)   (0.212) 
NoOfStars2 × OwnTenure   0.082 ***   -1.400 *** 
   (0.018)   (0.170) 
NoOfStars2 × OwnType   0.042   6.905 *** 
   (0.169)   (1.415) 
NoOfStars2 × ProjDyn   -0.162 ***   -0.522 *** 
   (0.004)   (0.032) 

Deviance (-2 log likelihood) 827751.1 827344.9 825088.3 1207061.5 1207023.4 1205346.8 

Deviance difference (∆ Dev)  406.2*** 2256.6***  38.1*** 1676.6*** 

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at Level 2. Deviation differences were calculated 

as the difference between the current model and the previous model, i.e., ∆ D2 = D2-D1 and ∆ D5 = D5-D4. The significance of difference was 

tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard errors 
in parentheses. 
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Table A5. Results of Falsification Test 

 
Project quality Project popularity 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

(Intercept) 12.057 *** 8.006 *** 7.674 *** 39.153 *** 26.706 *** 26.102 *** 
 (0.631) (0.640) (0.644) (2.968) (3.028) (3.011) 

NoOfNonStars 0.196 *** 0.191 *** 0.215 *** 0.069 *** 0.041 0.097 *** 
 (0.005) (0.005) (0.005) (0.021) (0.021) (0.022) 

ProjTenure 0.156 -0.427 1.391 *** 1.234 -0.431 -0.141 
 (0.301) (0.298) (0.324) (1.320) (1.315) (1.417) 

OwnTenure -1.169 *** -0.919 *** -0.972 *** -2.163 * -1.502 -1.305 
 (0.219) (0.215) (0.226) (0.999) (0.991) (1.025) 

AveYrCont 0.001 0.001 0.002 ** 0.016 *** 0.015 *** 0.015 *** 
 (0.001) (0.001) (0.001) (0.003) (0.003) (0.003) 

TotYrCont -0.001 ** -0.000 * -0.001 *** -0.008 *** -0.008 *** -0.008 *** 
 (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 

OwnType -1.785 -3.356 ** -1.932 68.678 *** 63.716 *** 50.966 *** 
 (1.067) (1.044) (1.108) (5.050) (4.993) (5.176) 

ProjDyn 0.124 *** 0.112 *** 0.045 ** 0.280 *** 0.244 ** 0.195 ** 
 (0.016) (0.016) (0.016) (0.075) (0.074) (0.075) 

IssOpen -0.170 *** -0.170 *** -0.171 *** -0.214 *** -0.202 *** -0.234 *** 
 (0.005) (0.005) (0.005) (0.019) (0.019) (0.020) 

NoOfStars 14.320 *** 31.144 *** 31.943 *** 16.756 *** 71.618 *** 71.792 *** 
 (0.599) (0.890) (0.968) (2.488) (3.879) (4.173) 

NoOfStars2 0.145 -1.163 *** -0.316 * 14.641 *** 9.622 *** 9.794 *** 
 (0.106) (0.132) (0.152) (0.437) (0.560) (0.639) 

PropOfStarCont  -55.112 *** -49.381 ***  -155.155 *** -192.529 *** 
  (2.872) (2.955)  (12.201) (12.628) 

NoOfStars × PropOfStarCont  12.359 ** -9.859 *  42.128 * 52.775 ** 
  (4.093) (4.478)  (17.076) (18.767) 

NoOfStars2 xPropOfStarCont  -0.138 5.509 ***  -12.850 *** -16.145 *** 
  (0.739) (1.042)  (3.052) (4.306) 

NoOfStars × ProjTenure   -5.308 ***   -0.630 
   (0.451)   (1.859) 

NoOfStars × OwnTenure   -1.584 ***   1.948 
   (0.277)   (1.159) 

NoOfStars × OwnType   0.288   68.722 *** 
   (1.432)   (5.990) 

NoOfStars × ProjDyn   0.815 ***   0.177 
   (0.033)   (0.142) 

NoOfStars2 × ProjTenure   -0.216 ***   -0.445 
   (0.058)   (0.239) 

NoOfStars2 × OwnTenure   0.680 ***   -2.003 *** 
   (0.046)   (0.192) 

NoOfStars2 × OwnType   -3.135 ***   -24.275 *** 
   (0.384)   (1.582) 

NoOfStars2 × ProjDyn   -0.183 ***   0.048 
   (0.009)   (0.035) 

Deviance  

(-2 log likelihood) 
981330.9 980602.2 979380.1 1229920.0 1229592.6 1229128.2 

Deviance difference 

 (∆ Dev) 
 728.7*** 1222.1***  327.4*** 464.4*** 

Note: There are 86,728 observations at the periodic level that correspond with 21,456 projects at Level 2. Deviation differences were calculated 

as the difference between the current model and the previous model, i.e., ∆ D2 = D2-D1 and ∆ D5 = D5-D4. The significance of difference was 
tested after accounting for the estimated parameters in the two models. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001; standard 
errors in parentheses. 
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