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Abstract. Vision-based automated surface inspection systems (ASIS) in flat
steel production identify and classify surface defects to assess quality. Machine
learning is used for defect classification, requiring high-quality training data
with accurate labels. However, label errors often arise due to annotator mistakes,
insufficient domain knowledge, or inconsistent class definitions. We propose a
simple and effective method to detect label errors in tabular data using the area
under the margin score and gradient-boosted decision tree classifiers. Our ap-
proach detects label errors with a single model training run, enabling efficient
screening to improve data quality. Validated on multiple datasets, including real-
world flat steel defect datasets, our method effectively identifies synthetic and
real-world label errors. We demonstrate how to integrate our method into data
quality control workflows, improving classification performance and enhancing
the reliability of defect detection in industrial applications.

Keywords: Label Error Detection, Automated Surface Inspection System
(ASIS), Machine Learning, Gradient Boosting, Data-centric AI.

1 Introduction

Flat steel production involves multiple stages and machines, with quality control ide-
ally taking place after each stage of the production process (Agarwal and Shivpuri,
2014; Neogi et al., 2014). Common surface defects include scratches, cracks, non-
metallic inclusions, unevenness, and soiling (Wu et al., 2007). In order to efficiently
detect those defects, automated surface inspection systems (ASIS) are deployed as part
of the quality control workflows within flat steel production (Neogi et al., 2014; Verein
Deutscher Ingenieure e.V., 2023). While attempts have been made to adopt recent



technologies, i.e., computer vision with Convolutional Neural Networks (CNNs), to
the field of ASISs (Bouguettaya and Zarzour, 2024), it is still common practice to
derive tabular defect classification features from image data using custom computer
vision algorithms (Verein Deutscher Ingenieure e.V., 2023).

Independent of the classifier that is used, labeled defect images are necessary for
model training and validation. Selecting and labeling defects requires specialized do-
main knowledge about the classes of defects that occur in flat steel rolling and their
possible appearance, which can be ambiguous (Nauth et al., 2024). Inconsistent labels
have a considerable impact on the classifier’s performance - A well-known issue in the
literature on machine learning models (Vaaras et al., 2025).

Most contemporary methods for the assessment of label quality focus on computer
vision settings, i.e., image data, and rely on or presume neural network models, since
neural networks are the predominant model type for these tasks (Chen et al., 2019; Han
et al., 2018; Pleiss et al., 2020). In contrast, research on tabular data representations is
limited and the proposed methods incur a notable computational overhead (Northcutt
et al., 2021a). Furthermore, many established methods focus on automatic removal or
correction rather than quality-based sorting, limiting their practical benefit since expert
oversight is needed to preserve correctly labeled atypical samples, while efficiently
directing limited expert time toward investigating potential label errors.

This raises our research question:
How to accelerate the identification of label errors in the data used for ASIS train-

ing and validation?
To address this question, we introduce a computationally efficient method for sort-

ing tabular data by label quality. This specific combination - computationally efficient
sorting of samples by label quality to detect most likely tabular data label errors - rep-
resents a novel contribution. We apply our method to real-world data from two flat
steel plants in a case study. Finally, we outline how the method can be integrated into
existing classifier training and quality control processes at these plants.

2 Background

2.1 Label Errors
Training classification algorithms requires a sufficient quantity of labeled data with a
diverse, yet accurate, representation of each class (Goodfellow et al., 2016). Data sam-
ples whose assigned labels do not correctly or meaningfully represent their true class
are referred to as label errors, also known as label noise or mislabeled examples (An-
gluin and Laird, 1988; Frénay and Verleysen, 2013). These errors must be distinguished
from hard-to-classify samples, which are legitimately assigned to their designated
classes despite either lacking some common characteristics or exhibiting properties
that overlap with those of other classes. True label errors, in contrast, reflect incorrect
assignments.

Reasons for label errors are diverse. Label errors can be caused by differences in the
subjective classification of defects by different annotators, ambiguous defects, or mul-



tiple defect classes occurring on the same image snippet, like a water drop near a
scratch (Nauth et al., 2024; Wu and Lv, 2021). The distinction between hard-to-clas-
sify samples and true label errors is often subtle or subjective, particularly when class
definitions are vague. Correct labeling for ASIS, therefore, depends on domain knowl-
edge and consensus class definitions. Label errors in training data may be memorized
by machine learning models and impairing generalization, notably when model train-
ing lacks sufficient regularization. Label errors in validation data can distort validation
performance measures, hindering the reporting of performance and the optimization of
model parameters (Northcutt et al., 2021b).

Unlike anomalies, label errors do not violate the distribution of the input domain.
However, they distort the joint distribution between inputs and labels, interfering with
learning. Detecting label errors is generally more challenging when there is a high rate
of label errors in the data, as this complicates modeling the structure in the data (Chen
et al., 2019; Zhang et al., 2016). Structured label noise (Chen et al., 2019), such as
when certain classes are often confused, also complicates label error detection for the
same reason.

2.2 Related Work on Label Error Detection
Most contemporary methods for label error detection focus on computer vision set-
tings, i.e., image data, and depend on neural network models, since neural networks
are the predominant model type for these tasks (Chen et al., 2019; Han et al., 2018; C.
Northcutt et al., 2021; Pleiss et al., 2020). While the methods proposed by Northcutt et
al. (2021a) and Chen et al. (2019) provide effective data-agnostic and model-agnostic
approaches, they are computationally expensive due to the requirement of repeated
training runs for out-of-sample prediction.

Confident Learning by Northcutt et al. (2021a) exploits patterns in the generaliza-
tion behavior of classifiers to detect label errors. In this approach, generalization con-
fidence information is utilized to estimate which labels are noisy and to use probabilis-
tic thresholds to estimate the label noise transition matrix of the data.

In contrast, (Pleiss et al., 2020) developed the area under the margin (AUM) rank-
ing method that traces the learning dynamics of individual samples in neural networks
over the course of training through the classification logits. Their key observation is
that, due to the gradual and iterative nature of neural network training, each training
sample contributes only partially to the change in model predictions in each training
epoch. Samples that are similar to many other samples of the same class exert a com-
bined effect on model training, resulting in the fast and confident classification of such
samples into their assigned class. In contrast, irregular samples or samples with un-
expected labels are learned more slowly or not at all.

2.3 Gradient Boosting Trees and Neural Networks

ASIS defect detection typically employs data-driven AI methods. Decision trees are a
widely used technology for defect classification in ASIS (Neogi et al., 2014). Decision
trees are supervised machine learning algorithms that build models based on the re-



cursive partitioning of the input data space. A popular variant of decision trees is Gra-
dient Boosted Decision Trees (GBDTs). GBDTs build ensembles of models by adding
trees sequentially: each new tree is trained to fit the residual errors (pseudo-residuals)
of the current ensemble, gradually improving overall accuracy. XGBoost is a widely
adopted GBDT implementation that leverages second-order gradient information and
built-in regularization to reduce overfitting and accelerate training (Chen and Guestrin,
2016).

Our defect classifier is an XGBoost model. We draw a direct parallel between how
GBDTs and neural networks (NNs) optimize the same loss (multiclass cross‐entropy)
via gradient information. In GBDTs, each tree update follows:

𝐹𝑚 𝑥 = 𝐹𝑚−1 𝑥 − 𝛼∇𝐹𝑚−1(𝑥)𝐿

where ∇𝐿 are the “pseudo‐residuals” (i.e., gradients of the loss with respect to the
previous models’ predictions 𝐹𝑚−1 𝑥 ). In NNs, training proceeds by updating param-
eters 𝜃 in iteration 𝑡 as follows:

𝜃𝑡 = 𝜃𝑡−1 − 𝛼∇𝜃𝐿(𝑥,𝑦;𝜃)

This induces changes in the network’s output function. Although GBDT gradients
operate in function space while NN gradients operate in parameter space, both meth-
ods rely on the same cross‐entropy gradient:

𝜕𝐿
𝜕𝑧𝑘

=  
𝑝𝑘 − 1, if 𝑘 = 𝑦
𝑝𝑘,       if 𝑘 ≠ 𝑦

where 𝑧𝑘 is the model’s output (logit) before applying the softmax function, and 𝑝𝑘
is the confidence of the sample belonging to class 𝑘. Due to this shared gradient struc-
ture, both methods increase confidence in the true class early in training: correctly
labeled samples produce large negative gradients for the correct class (pushing logits
or tree outputs up), while mislabeled samples (which structurally resemble their true
class) tend to be “correctly” classified at first and only shift toward the wrong label
later when the model begins to memorize noise. By treating the sequence of trees in
XGBoost as analogous to a NN weight update trajectory, we exploit a unified gradient-
based intuition for detecting mislabeled or atypical samples. Both methods learn ex-
emplary samples of each class early in training through general rules that apply to
numerous samples, while increasingly atypical examples and edge cases are learned in
later stages. Crucially, mislabeled samples obey the structure of their true class and
tend to be assigned to the correct class during early training before eventually being
memorized with their incorrect labels. This helps distinguish mislabeled samples from
atypical but correctly labeled samples.

3 Methods

To answer the research question, we adapt AUM (Pleiss et al., 2020) for GBDT mod-
els (Section 3.1). We explain how our label quality scores enable identification of
samples for manual inspection to effectively improve data quality (Section 3.2). We



present the state-of-the-art (Northcutt et al., 2021a) against which we compare our
approach to assess its competitiveness and discuss its efficiency (Section 3.3) and
describe the computational experiment setup for evaluating our method (Section 3.4).

3.1 Algorithm
To exploit the gradient-based learning dynamics discussed in Section 2.4, we adapt the
AUM score to GBDT models. With GBDT models, the method requires only a single
well-generalizing trained classifier, because we can track the training process through
the predictions of each sub-learner.

Definition 1 (AUM for GBDT models).
For each input-label pair in the training data 𝒙, 𝑦  ∈𝒟 and every step 𝑘 ≤ 𝐾 in the
training process, we consider the predicted probability of its assigned class 𝑝𝑦

(𝑘) 𝒙
minus the probability of the most likely other class 𝑚𝑎𝑥𝑐≠𝑦 𝑝𝑐

(𝑘) 𝒙 , where 𝑝𝑐
(𝑘)(𝒙) is

the predicted probability of 𝒙 belonging class 𝑐 ∈ {1,…, 𝐶} using the first k estimators,
and average over all training steps. Formally,

𝐴𝑈𝑀 𝒙,𝑦 = 1
𝑘

𝐾

𝑘=1
𝑝 𝑘

𝑦 (𝒙) − max
𝑐≠𝑦

𝑝 𝑘
𝑐 (𝒙) .

That is, we iteratively add each sub-learner that constitutes the GBDT to the model
and measure the probability margin for the sample’s assigned class. This way, we
measure how the model’s confidence in the assigned label evolves during training and
how misleading or atypical each sample is for the model at each step.

3.2 Ranking Label Quality
Detecting data points that are most likely mislabeled enables efficient investment of
valuable expert time on improving annotation quality. Therefore, a score indicating the
relative confidence that a sample’s label is wrong is sufficient for most data quality
assurance workflows (compare with Northcutt et al. (2021a), where ranking label error
likelihood proves crucial). This avoids the need to partition between label errors and
correctly labeled samples. Even in approaches where a subset of samples is denoted as
potential label errors, in practice, only a fraction of these samples can be manually
inspected. This, in turn, requires some measure of relative confidence that the labels
are corrupt. A common approach, that parallels ours, is to order identified label errors
by the so-called Normalized Margin (𝑝𝑦 𝑥 − 𝑚𝑎𝑥𝑐≠𝑦 𝑝𝑐(𝑥)) (Bartlett et al., 2017)
computed using out-of-sample probabilities on trained models. If a threshold is re-
quired to separate label errors from correctly labeled data, the approach from Pleiss et
al., (2020), which uses a set of threshold samples assigned to an additional class to
simulate label errors, can be adapted.



3.3 Comparison with Out-Of-Sample Generalization-Based Methods
We compare our method against out-of-sample (OOS) prediction-based methods in-
formed by Confident Learning (Northcutt et al., 2021a) for scoring label quality. To
our knowledge, these are the most effective methods in the literature for sorting tabular
data by label quality.

We compare AUM against Self-Confidence (𝑝𝑦(𝑥)) and Normalized Margins (
𝑝𝑦 𝑥 − 𝑚𝑎𝑥𝑐≠𝑦 𝑝𝑐(𝑥)) (Bartlett et al., 2017) using OOS predictions to score and rank
label quality. These methods are robust yet computationally expensive, relying on
cross-validation for OOS classification probabilities. Following common practice, we
use fivefold class-stratified cross-validation to obtain the OOS classification proba-
bilities. These methods were selected for their reliable performance on the datasets we
consider and because Normalized Margins is the method applied to sort label errors by
Northcutt et al. (2021a). As an additional baseline, we compare AUM to Confident
Learning Method 4: Prune by Noise Rate (CL 4) (Northcutt et al., 2021a).

3.4 Computational Experiment Setup
We conduct experiments on common publicly available datasets for tabular data (Ash-
win Srinivasan, 1993; Bator, 2013; D. Campos, 2000; E. Alpaydin, 1998; Jorge Reyes-
Ortiz, 2013; Nidula Elgiriyewithana, n.d.; Slate, 1991; UCI Machine Learning Repos-
itory, 1981) and one synthetic tabular dataset where each class represents a spiral in
two-dimensional space (Malinin et al., 2020). Additionally, we consider two industry
datasets with tabular steel strip defect detection data labelled “Industry Dataset A” and
“Industry Dataset B”. The input features of the industry datasets are computed by the
ASIS provider using computer vision algorithms based on the defect images and thus
do not contain plain image data.

Table 1. Datasets, corresponding model configurations, and fivefold cross-validation perfor-
mance. Configurations and performance on industry data are redacted.

Name #Samples #Features #Classes #Estimators Max. Tree Depth Val. Acc (%)
Cardiotocography 2126 21 3 30 3 94.92
Credit Card Fraud 284807 30 2 50 5 99.96

Digits 1797 64 10 50 5 96.49
Human Activity 10299 562 6 100 5 99.23

Letters 20000 16 26 100 5 96.11
Satellite 6435 36 6 50 5 91.67

Sensorless Drive 58509 48 11 50 5 99.84
Spirals 1500 11 3 50 5 98.93

Mushrooms 8124 117 2 50 3 100
Industry Dataset A 24525 399 46 - - -
Industry Dataset B 56047 425 25 - - -



The GBDT models were trained using XGBoost (Chen and Guestrin, 2016). The
number of estimators (i.e., sub-learners) and the tree depth were chosen to maximize
cross-validation performance. All other parameters use XGBoost version 2.0.3 de-
faults. For the industry datasets, proprietary parameters optimized for the same ob-
jective were used. Table 1 summarizes the datasets, model configurations, and cross-
validation accuracies of the classifier configuration used for label error detection on
these datasets without added label noise.

To simulate diverse label noise conditions of varying strength (5%, 10%, and 20%
label flipping probability per sample), we add either uniform or asymmetric synthetic
label noise to the data. Asymmetric noise reassigns samples from each class to a spe-
cific target class with fixed probability, simulating structured confusion between par-
ticular classes. Uniform noise randomly reassigns labels to any other class with equal
probability across all classes. Asymmetric noise represents a challenging scenario that
introduces systematic bias, while uniform noise provides a baseline without structured
corruption (Chen et al., 2019).

We evaluate AUM and the other label error detectors on all samples, irrespective of
whether they were originally part of the training or validation data of the underlying
classification task. We compare the methods using the area under the receiver oper-
ating characteristic curve (AUROC). Accuracy is measured through fivefold class-
stratified cross-validation computed on the original validation labels.

We perform 10 trials for each combination of dataset, label noise type, and label
noise rate. For each trial we resample the class-stratified folds used in cross-validation,
the label noise, including the noise transition matrix in the case of asymmetric noise,
and the seed for XGBoost. To compare label error detectors, we compare AUROC
across all trials. Qualitatively, we report the frequency with which one detector out-
performs another in terms of AUROC across datasets, label noise settings, and trials.

3.5 Ablation Experiments
We consider the extent to which prediction confidence is important to the performance
of our method by comparing it to Ablation 1, which, at each training step, only counts
whether the model correctly predicts the sample’s label. To assess the importance of
using the probability margin at each training step, we compare to Ablation 2, which
averages only the model’s probabilities for the assigned class without subtracting the
probability for the most likely other class.

3.6 Evaluation of Practical Utility
To evaluate practical utility, we deployed our method with two customers of the ASIS
supplier. We conducted semi-structured interviews with the employee responsible for
classifier training at one customer firm and the ASIS supplier employee who intro-
duced the label error scores at both test sites. The second customer's employee declined
participation, but the supplier employee reported their impressions of this user's ex-
perience. The interviews focused on several key aspects, including the process of iden-
tifying labeling errors prior to the introduction of the scores, how the scores were in-



troduced (e.g., the type of explanation provided), their visual integration into the soft-
ware, workflow changes resulting from their use, and potential areas for improvement.
To better understand the workflow before and after the introduction of the scores, we
asked the employee responsible for classifier training to share his screen and demon-
strate how he uses the scores to detect labeling errors in the dataset - an approach
aligned with the established Think-Aloud Method (Charters, 2003). This allowed us to
verify whether the method was being used as intended and to assess its effectiveness in
reducing the time required for label error correction. Both interviews were conducted
via video conferencing, recorded, transcribed, and systematically analyzed to generate
insights for the optimal integration of the scores into existing processes.

4 Results

We demonstrate that our proposed method is highly competitive while being more
efficient than existing solutions for label error detection (Section 4.1). Based on these
results, we demonstrate how our method can enhance GBDT performance by simply
removing samples by label quality score (Section 4.2). Lastly, we demonstrate how our
method facilitates effective data inspection to enhance data quality and can be success-
fully integrated into existing ASIS quality control workflows (Section 4.3).

4.1 Competitiveness
Comparing AUM to out-of-sample (OOS) generalization-based methods in terms of
AUROC across all datasets and label noise conditions shows that AUM equals or
outperforms Normalized Margins in 53.0% of trials and equals or outperforms Self-
Confidence in 42.0% of trials, while requiring only one training run. The Confident
Learning Method 4 (CL 4) approach, which first detects and then ranks label errors,
produces worse rankings than AUM in 99.7% of all trials. Figure 1 visualizes the per-
trial comparison between AUM and these OOS generalization-based methods.

Figure 1. Per-trial AUROC (%) comparison between AUM and OOS generalization-based
methods, Normalized Margins, Self-Confidence, and CL 4, across all label noise conditions. We
show the trials from all datasets.

Ablation studies reveal that AUM equals or outperforms Ablation 1 in 96.1% of tri-
als and equals or outperforms Ablation 2 in 72.0% of trials, while Ablation 2 equals or



outperforms Ablation 1 in 86.2% of trials. Figure 2 visualizes the per-trial comparison
between AUM and both ablations. Table 2 presents performance comparisons among
all methods under 5% asymmetric label noise for each dataset.

Figure 2. Per-trial AUROC (%) comparison between AUM, Ablation 1, and Ablation 2 across
all datasets and label noise conditions. We show the trials from all datasets.

Table 2. Performance comparison of AUM with the OOS prediction-based methods and the two
ablations under 5% asymmetric label noise in terms of AUROC (%). Larger values are better.
Best values are shown in bold. We report the mean and the standard deviation across 10 trials.

Dataset Ablation 1 Ablation 2 AUM Normalized
Margins

Self-
Confidence CL 4

Cardiotocography 96.8 ± 1.7 98.9 ± 0.6 98.9 ± 0.6 98.9 ± 0.5 98.8 ± 0.5 93.7 ± 1.4
Credit Card Fraud 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 94.9 ± 0.3

Digits 95.6 ± 1.1 99.5 ± 0.2 99.6 ± 0.2 99.6 ± 0.2 99.5 ± 0.2 96.2 ± 1.8
Human Activity 99.0 ± 0.4 99.8 ± 0.0 99.8 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 98.6 ± 0.4

Letters 99.2 ± 0.1 99.1 ± 0.1 99.4 ± 0.1 99.5 ± 0.0 99.3 ± 0.1 97.1 ± 0.4
Mushrooms 99.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.2 ± 0.7

Satellite 96.3 ± 0.8 98.0 ± 0.3 98.0 ± 0.3 98.4 ± 0.2 98.4 ± 0.3 94.8 ±1.0
Sensorless Drive 99.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.0 ± 0.3

Spirals 97.5 ± 1.6 99.3 ± 0.7 99.6 ± 0.5 99.7 ± 0.2 99.7 ± 0.3 97.1 ± 1.7
Industry Dataset A 96.5 ± 0.3 96.4 ± 0.3 97.1 ± 0.2 95.9 ± 0.2 97.8 ± 0.3 92.7 ± 0.7
Industry Dataset B 96.4 ± 0.5 96.2 ± 0.2 96.7 ± 0.2 96.8 ± 0.2 97.8 ± 0.3 93.7 ±0.5

Overall, AUM performs similarly to the more computationally expensive OOS pre-
diction-based techniques for ranking label quality across datasets and label error con-
ditions. Comparing Ablation 1 to Ablation 2 demonstrates that incorporating classifier
prediction confidence into the label quality score contributes to our method’s effec-
tiveness. The comparison of Ablation 2 with AUM further shows that considering the
classifier's confidence for the most likely class not assigned to a sample also contrib-
utes to performance.

4.2 Improving Accuracy through Naive Data Cleaning
Figures 3 and 4 illustrate an exemplary process that utilizes AUM scores to enhance

models by removing the lowest-scoring samples from training. On industry datasets,



our method improves model performance to a similar extent as the OOS prediction-
based method, demonstrating that AUM can improve model performance for tabular
data under noisy labels even without manual label inspection and correction. Notably,
without synthetic noise, AUM generally outperforms Self-Confidence on both indus-
try datasets.

Figure 3. Effect of removing mislabeled samples on model performance with added synthetic
label noise. Mislabeled samples are selected either with AUM, Self-Confidence, or at random.
We report the change in cross-validation accuracy, compared to retaining all samples. Trials
were performed with 5% asymmetric label noise. We report the mean and standard error of the
mean over 7 trials. The dashed line corresponds to 5% removed samples.

Figure 4. Effect of removing mislabeled samples on model performance without synthetic label
noise. Mislabeled samples are selected either with AUM, Self-Confidence, or at random. We
report the change in cross-validation accuracy, compared to retaining all samples. We report the
mean and standard error of the mean over 7 trials.

4.3 Real-World Application and Process Integration
A preliminary application of AUM for GBDT models (alongside Self-Confidence
scores) was conducted on flat steel defect data, which included real-world label errors
and data quality issues, provided by two of the ASIS supplier's customers. An expert
of the ASIS supplier and the employee responsible for the classifier training at the test
customer plants, who can be described as domain expert, examined the samples with
the lowest AUM scores. The results confirmed that high scores indicate good training
samples in most cases, while low scores identify mislabeled or unusual samples. Out



of the 57 samples examined, 24 (42%) were identified as label errors. Additionally,
four samples were flagged that were not label errors, but were highly unusual data
points that revealed a rare error in the data pipeline.

The method had been integrated into the ASIS software and the classifier training
process, accelerating the quality control workflow. ASIS users confirmed that intro-
ducing AUM and Self-Confidence scores into the ASIS interface reduced the time
spent identifying and correcting low-quality samples and thereby raising the quality of
the training and validation data. Previously, the ASIS did not provide workflow as-
sistance for identifying misclassified defects. Users had to check numerous samples
randomly or based on unsuitable metrics to identify label errors. With the new scores,
significantly fewer labeled samples need to be inspected manually, as low scores from
either method reliably indicate label errors. Manual review can result in label correc-
tion, sample removal, or the addition of more samples for underrepresented classes.
AUM and Self-Confidence may also flag samples as noisy when they belong to un-
derrepresented classes, are outliers with correct labels, or are corrupted by data pro-
cessing errors. The process can iterate, improving data based on label quality scores
and retraining the model, which improves model and label error detection accuracy
through progressively better data modeling.

Overall, our method was evaluated as suitable for quickly and effectively identify-
ing problems in the training and validation data:
“I found defects that had just a partial defect or the segmentation is not right, and

the [AUM] and [Self-Confidence scores] will call that out to me. And I’m like, yeah,
that’s right, man, that spot shouldn’t even be in my classifier. So I’ll throw that out of
my classifier.” ASIS user

5 Discussion and Conclusion

In this study, we adapted the AUM ranking from Pleiss et al. (2020) to tabular data,
particularly real-world industrial flat steel defect data. We demonstrate that the adapted
method performs well across diverse datasets while being computationally more ef-
ficient than comparable methods and integrates effectively into data quality assurance
workflows.

Unlike most research in this field, we evaluate label error detectors primarily on la-
bel error detection performance rather than downstream classifier performance. This
distinction is critical, as samples flagged as potential label errors, whether truly mis-
labeled or merely hard-to-classify, may significantly impact model generalization
ability. Automatically removing or relabeling these samples risks discarding valuable
edge cases. Therefore, using final model performance as a proxy for label error de-
tection efficiency can be misleading. Rather than assuming a fixed methodology for
addressing label errors, our approach aims to empower domain experts in quality as-
surance. By prioritizing the most suspicious samples, our method helps experts use
their limited time more efficiently.
Implications for practice - On a practical level, we contribute to improved human-

in-the-loop workflows by integrating AUM and Self-Confidence scores into the ASIS



quality control processes. This supports the recommendations of Nauth et al. (2024),
who advocate for quality control systems that can flag problematic training data. Label
quality scores like ours can serve as automated early-warning signals within such sys-
tems.
Implications for theory -On a theoretical level, we extend the applicability of AUM-

based analysis - originally developed for neural networks - to GBDTs. We demonstrate
that monitoring the learning dynamics of individual samples using AUM can effec-
tively highlight anomalous or mislabeled data, even with a GBDT model. This broad-
ens the scope of label error detection techniques to include widely used tabular data
models and industrial applications.
Limitations - While our empirical results demonstrate AUM’s effectiveness across

diverse tabular datasets and noise conditions, future theoretical analysis could further
strengthen our understanding of its reliability on GBDT models. Despite being faster
than multiple-run OOS methods, AUM still requires a single additional training run.
Low label quality scores are ambiguous - they may identify corrupted data or samples
that represent multiple classes. Additionally, improving data quality using AUM scores
remains a manual process that requires expert oversight, as the automatic removal of
low-scoring samples can eliminate valuable edge cases and reduce model performance,
as shown in Figure 4.
Future research - Future work should focus on integrating label error detection, in-

cluding AUM, into broader data quality management systems that alert on label qual-
ity issues. This could include proposing label corrections based on AUM and iden-
tifying classes that are frequently confused during labeling, thereby identifying prob-
lems in class ontologies, as in Northcutt et al. (2021a). Further, AUM, Self-Confidence,
and potentially other scores could be integrated into a single score, as suggested by an
ASIS user responsible for classifier training in an interview: "So that would make sense
to be able to combine all three [scores used for label error detection] into saying this
is the true defect here."

Overall, this research demonstrates that integrating AUM and Self-Confidence
scores into classifier training workflows on tabular data is a valid data-centric machine
learning practice that optimizes operational efficiency and supports high-quality de-
cision-making, representing a significant advance in data-driven quality control.
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