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Abstract. Generative Artificial Intelligence (GenAI) is rapidly transforming in-
dustries, yet its adoption in industrial product companies remains fraught. Unlike 
software and service firms, they often lack digital expertise, are challenged with 
legacy systems, and operate in a complex environment of hardware, software, 
and service. While the hype surrounding GenAI promises future breakthrough 
innovation, industrial product companies must navigate intricate challenges to 
realize its full impact. This study, based on expert interviews with industry lead-
ers and GenAI technology providers, identifies nine key challenges and corre-
sponding countermeasures that shape GenAI adoption in industrial product com-
panies. By structuring these insights across core dimensions - technology, organ-
ization, and environment - we bridge the gap between expectation and execution, 
offering practical guidance for firms seeking to move beyond experimentation 
toward meaningful value creation. Our findings contribute to a deeper under-
standing of the nuanced adoption processes of GenAI in industrial contexts. 
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1 Introduction 

The rapid emergence of generative artificial intelligence (GenAI) significantly dis-
rupted organizational practices (McAfee et al., 2023; Solaiman et al., 2023). Unlike 
other modern technological innovations (e.g., mobile computing or cloud) that settled 
in consumer practices well in advance of business practices, the speed and decisiveness 
of GenAI adoption in industrial product companies (IPCs) is unprecedented (Bain, 
2024b). While previously foremost BigTech software companies entered and embraced 
technological innovations with significant investments early stage, with GenAI, also 
industrial product companies and their managements showcased great determination 
and conviction in adopting this technology. For example, leading industrial product 
companies such as Bosch or Siemens invested significant resources in GenAI startups, 
ventured own GenAI solutions, or entered strategic partnerships with technology pro-



viders (e.g., NVIDIA, Microsoft, or AWS) (Bosch, 2023, 2024; NVIDIA, 2022; Sie-
mens, 2024). Ultimately, IPCs take a decisive forward-looking approach to adopting 
GenAI, yet they still face significant challenges in fully integrating it across their value 
chains and scaling its adoption (Sebastian et al., 2020). Accompanying these real-world 
dynamics, the IS community is well-positioned to examine the intricate dynamics in-
volved in IPCs adopting GenAI (Berente et al., 2021). IS research contributes a com-
prehensive portfolio of technology adoption frameworks (Rogers, 1995; Tornatzky & 
Fleischer, 1990), best practices (Johnston & Mehra, 2001; Zhou & McLaren, 2014), 
and strategies (Abdelghaffar et al., 2024; Kapupu & Mignerat, 2015), that have guided 
organizations in generating competitive advantage through technology. 

However, the trajectory of GenAI adoption is markedly distinct. Rather than the 
gradual, cautious uptake observed with earlier innovations, top-level executives in IPCs 
are making GenAI their top priority (Bain, 2024a). Yet, unlike software and service 
firms, IPCs often lack digital expertise, are challenged with legacy systems, and operate 
in complex environments integrating hardware, software, and service (Al-kfairy, 2025; 
Anderson et al., 2022). Moreover, GenAI’s potential to democratize AI access (Seger 
et al., 2023) and its emergence as the next “horizontal enabling layer” (Bezos, 2024), 
boost productivity among both AI experts and non-experts, which distinguishes its 
adoption pattern from that of other technologies. 

Altogether, reflecting on the complexity of GenAI technology and the view that in-
action could pose an existential threat (Singh et al., 2024), industrial product companies 
are actively seeking strategies to integrate and leverage GenAI while confronting un-
precedented organizational, technical, and environmental challenges (Schneider et al., 
2024). To support their shift from experimentation to value-generating application, 
scholars and practitioners need a clearer view of both the obstacles that arise inside 
industrial settings and the strategic levers that successfully mitigate them. Hence, we 
investigate (RQ1): “What challenges do industrial product companies face in adopting 
Generative AI? And (RQ2): What strategies do industrial product companies adopt to 
overcome these challenges?”  

Following seminal IS research on technology and AI adoption (e.g., Hamm & 
Klesel, 2021; Madan & Ashok, 2023; Oliveira & Martins, 2011), we utilize the tech-
nology–organization–environment (TOE) framework to provide a structured approach 
analyzing adoption challenges at the firm level (Tornatzky & Fleischer, 1990). We con-
ducted an interview study (Myers & Newman, 2007; Schultze & Avital, 2011), inte-
grating the dual perspective of IPCs and GenAI technology providers. This dichotomic 
conceptualization allows us to examine the challenges and countermeasures associated 
with GenAI adoption in a holistic manner. More concretely, we identify nine key chal-
lenges and corresponding countermeasures related to the adoption of GenAI within in-
dustrial product companies. 



2 Theoretical Background 

2.1 Information Technology Adoption at the Company Level 

Information technology adoption has historically catalyzed transformative shifts within 
organizations and industries (Scott, 1992; Thompson & Bates, 1957; Woodward, 
1994). Each technological advancement, such as the IoT, has redefined value creation 
and operating models (Abdelghaffar et al., 2024; Wlcek et al., 2023). Understanding 
these dynamics is essential for examining the unique opportunities and challenges 
posed by emerging technologies like GenAI. 

Technology adoption models can be broadly categorized into individual-level mod-
els and firm-level models (Oliveira & Martins, 2011). While models such as the Tech-
nology Acceptance Model (TAM), the Theory of Planned Behavior (TPB), and the 
Unified Theory of Acceptance and Use of Technology (UTAUT) are primarily de-
signed to capture individual user acceptance and behavioral intentions, firm-level 
frameworks account for broader organizational and environmental factors (Ajzen, 
1991; Marangunić & Granić, 2015; Oliveira & Martins, 2011; Venkatesh et al., 2012).  

At the company level, technology adoption is commonly studied through frame-
works such as the diffusion of innovation (DOI) theory (Rogers, 1995) and the TOE 
framework (Oliveira & Martins, 2011; Tornatzky & Fleischer, 1990). DOI explains 
how innovations spread over time and identifies firm-level factors influencing adop-
tion, such as leader attitudes, organizational structure, and external openness. In con-
trast, the TOE framework is particularly well-suited to the present study, as it explicitly 
integrates the environmental context, encompassing industry dynamics, competitive 
pressures, and regulatory factors, with technological and organizational considerations. 
This provides a more comprehensive and empirically validated approach for analyzing 
intrafirm IT adoption. Similarly, the TOE framework outlines three contexts influenc-
ing technological innovation: the technological context (existing and emerging tech-
nologies relevant to the firm), organizational context (size, structure, and internal pro-
cesses), and environmental context (industry dynamics, competitors, and regulatory 
factors). The TOE framework extends DOI by adding the environmental dimension, 
providing a robust and empirically validated approach for analyzing intrafirm IT adop-
tion, with applicability across diverse IS innovation studies, including AI and GenAI 
(Hamm & Klesel, 2021; Kowalczyk et al., 2023; Ronaghi, 2023). 

Given the fact that this research focuses on company-level GenAI adoption chal-
lenges, the TOE framework was chosen due to its comprehensive consideration of both 
internal organizational factors and external environmental influences. 

2.2 Generative Artificial Intelligence 

Generative AI describes the use of models like generative adversarial networks 
(GANs), variational autoencoders (VAEs), or transformers to autonomously generate 
new content (Goodfellow et al., 2020; Kingma & Welling, 2019; Vaswani et al., 2017). 
This emerging technology provides organizations with a tool that can rapidly produce 
high-quality outputs at minimal cost, offering significant potential for innovation and 



operational efficiency (Holmström & Carroll, 2024). GenAI has demonstrated applica-
tions across various industries, including healthcare, engineering, and business, under-
scoring its versatility (Feuerriegel et al., 2024; Gozalo-Brizuela & Garrido-Merchán, 
2023). 

Despite its rapid rise, GenAI remains in its early stages of adoption, with organiza-
tions transitioning from experimentation to large-scale deployment. While its potential 
is widely recognized, its integration into business operations is still ongoing,(BCG, 
2024; McKinsey, 2024b; Schneider et al., 2024). Additionally, despite its promising 
capabilities, organizations face challenges in realizing GenAI’s full potential, particu-
larly around technical integration, organizational readiness, and the alignment of GenAI 
initiatives with broader strategic goals (Al-kfairy, 2025; BCG, 2023; McKinsey, 
2024a).  

While existing IS and management literature provides rich insights into the potential 
of GenAI across industries such as education and entrepreneurship (e.g., Hadidi & 
George, 2023) or specific applications such as coding and chatbots (e.g., Bruhin, 2024; 
Haase & Hanel, 2023), it provides little detail on the adoption challenges IPCs must 
overcome in adopting GenAI within their hardware, software, and service business.  

It is evident that IPCs encounter analogous challenges in adopting GenAI as other 
firms in disparate industries, yet the gravity and intricacy of these challenges are par-
ticularly pronounced (Anderson et al., 2022). In contrast to financial or software firms, 
IPCs primarily rely on physical products or product systems that are embedded in 
highly regulated environments, necessitating a balance between physical safety, strict 
IP protection, and compliance demands (Porter & Heppelmann, 2014; Wlcek et al., 
2024). The capital-intensive nature of their operations, encompassing hardware, soft-
ware, and service business, in conjunction with their narrow profit margins and prior 
investments in IIoT and Industry 4.0, underscores the imperative for a meticulous, ROI-
driven approach to technology adoption (Porter & Heppelmann, 2014; Wlcek et al., 
2024). Consequently, IPCs are compelled to adopt Generative AI with the utmost cau-
tion, ensuring that risk mitigation, compliance, and operational integration are executed 
with unparalleled rigor. 

3 Methodology 

We conducted an interview study within a diverse set of case companies to explore the 
adoption of GenAI in industrial product companies (Eisenhardt, 1989; Myers & New-
man, 2007; Schultze & Avital, 2011; Yin, 2018). This methodology allows for an in-
depth examination of real-world GenAI adoption, evidently reflecting practitioner per-
spectives of the process, its challenges, and the countermeasures industrial product 
companies employ. 

We used purposeful sampling to construct a diverse and comprehensive case sample 
representing real-world dynamics (Patton, 2014). While our cases cover ten different 
industrial sectors, we deliberately concentrated on firms with extensive AI patent port-
folios and established digital capabilities. This sampling logic positions the study at the 
frontier of real-world GenAI practices, focusing on companies with sufficient resources 



to pursue sustained GenAI adoption as early adopters. As a result, it takes on the per-
spective of larger incumbents rather than smaller SME firms. More concrete, we se-
lected industrial product companies within diverse industries and different stages of 
GenAI adoption in order to grasp a comprehensive perspective on the challenges they 
face. This diverse case selection allows us to derive a broader spectrum of GenAI use 
cases, eventually attributing more generalizable results (Eisenhardt, 1989; McIntosh & 
Morse, 2015). We purposely selected companies that build upon significant expertise 
in digital technology management. In fact, we incorporated the leading AI patent own-
ers in Europe (i.e., C1, C2, C7, C8) and in the US (i.e., C7, C8, C9, C10) (Harrity & 
Harrity, 2025; QUESTEL SAS, 2023). 

We aim to provide a holistic perspective on GenAI adoption in industrial product 
companies by integrating two expert groups across ten different organizations. First, 
we build upon insights from experienced, high-ranking managers within different IPCs 
that contribute profound understanding of IPCs’ value creation mechanisms and each 
organization as a whole. Second, we complement these insights through another set of 
interviews with technology and domain specialists in leading GenAI technology com-
panies, which typically provide the technical backbone for GenAI initiatives in indus-
trial companies. Integrating both perspectives, we accumulated a rich and nuanced un-
derstanding of intra- and interorganizational challenges of GenAI adoption in alignment 
with the TOE framework (Tornatzky & Fleischer, 1990). 

Our data collection comprises 22 semi-structured interviews we conducted with rep-
resentatives across different management levels (e.g., C-Level, executive, senior man-
ager, and manager) to ensure a diversified and multi-layered perspective on GenAI’s 
organizational impact and adoption processes (Dwivedi et al., 2024). We provide an 
overview of the conducted interviews in Table 1 below. 

The interviews took place from September to December 2024 and lasted on average 
59 minutes, varying due to differences in participant availability, role-specific respon-
sibilities, and the natural flow of conversation. In cases where interviews were shorter, 
our protocol emphasized a focused set of core questions and included probing follow-
up queries to ensure that essential insights were thoroughly captured. Participants were 
asked to reflect on their experiences with GenAI adoption, covering three key themes: 
(1) professional experiences regarding GenAI adoption and implementation, (2) de-
scription of faced challenges, and (3) taken countermeasures to overcome the depicted 
challenges. In some cases, multiple interviews were conducted within the same organ-
ization, either with different roles or the same participant when the initial interview was 
constrained by time, but the participant had further insights to offer, and the researcher 
had not yet reached the point of data saturation (Fusch & Ness, 2015). Secondary data 
sources, including company reports, publicly available statements, and practitioner ar-
ticles, were also reviewed to complement and validate the findings from the interviews. 

Our data analysis was iterative, following an abductive coding process grounded in 
thematic analysis (Blaikie, 1991; Eisenhardt, 1989). After each interview, key insights 
were documented and independently reflected upon by multiple researchers before be-
ing discussed collectively in order to minimize bias and avoid premature conclusions 
(Charmaz, 2006). These reflections were then compared against secondary data (e.g., 



company press releases, annual reports, industry whitepapers, and reputable news arti-
cles) to identify emerging themes and patterns related to GenAI’s impact on product 
companies (Eisenhardt, 1989). In alignment with established research on technology 
adoption, we subsequently mapped these insights onto the TOE framework (e.g., 
Hamm & Klesel, 2021; Madan & Ashok, 2023; Oliveira & Martins, 2011). Following 
this approach, we categorized the identified challenges and countermeasures across 
technological, organizational, and environmental dimensions, enabling a comprehen-
sive examination of the diverse factors influencing GenAI adoption within industrial 
product companies (Tornatzky & Fleischer, 1990). 

Table 1. Overview of interviewed experts 

 ID Interviewee  
Position 

Professional 
Experience 

Interview 
Length 

Case 

In
du
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al
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ct
 C

om
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ni
es

 

I01 Executive ~26 years 60 min C1: Advanced Manu-
facturing & Engineer-
ing  

I02 Executive ~13 years 60 min 
I03 Senior Manager ~20 years 60 min 
I04 60 min 
I05 Senior Manager ~19 years 30 min 
I06 Senior Manager ~22 years 60 min 
I07 Manager  ~7 years 65 min 
I08 Senior Manager ~25 years 60 min C2: Industrial Auto-

mation & Energy  I09 Senior Manager ~21 years 60 min 
I10 Manager ~11 years 60 min 
I11 Senior Manager ~10 years 35 min C3: Automotive 
I12 C-Level ~21 years 60 min C4: Energy Technol-

ogy & Industrial Au-
tomation 

I13 C-Level ~28 years 70 min C5: Precision Engi-
neering & Automa-
tion 

I14 90 min 

I15 Senior Manager ~18 years 60 min C6: Industrial Robot-
ics & Automation 

Te
ch

 P
ro

vi
de

rs
 

I16 Executive ~29 years 60 min C7: Enterprise AI & 
Cloud Infrastructure I17 Executive ~24 years 60 min 

I18 Senior Manager ~17 years 60 min 
I19 Senior Manager ~18 years 60 min C8: Enterprise AI & 

Cloud Infrastructure 
I20 Manager ~11 years 60 min C9: Enterprise AI & 

Cloud Infrastructure 
I21 Senior Manager ~26 years 60 min C10: Enterprise AI & 

Cloud Infrastructure I22 Manager ~16 years 60 min 



4 Results 

Our analysis identifies key challenges industrial product companies face in adopting 
GenAI. We conceptualized these findings into a triad of challenges composed of tech-
nical, organizational, and environmental factors that influence GenAI adoption. Ulti-
mately, IPCs adopting GenAI must address a range of GenAI-specific challenges that 
extend beyond those encountered in prior technology pushes, including cloud compu-
ting, Blockchain, or the IoT. Moreover, IPCs face more pronounced challenges of 
adopting GenAI in contrast to financial or software firms, ensuring risk mitigation, 
compliance, and operational integration into their existing hardware, software, and ser-
vice business.  

More concrete, we structure our insights into nine key challenges and corresponding 
countermeasures. Both emerged in the early adoption phase, after initial experimenta-
tion but before company-wide scaling. These “early pathways” underscore the dynamic 
and evolving nature of GenAI adoption in IPCs. 

4.1 Technological Challenges and Countermeasures of GenAI Adoption 

Technical challenges in adopting GenAI frequently stem from the unique characteris-
tics of foundation models, such as their non-deterministic behavior, variation across 
models, and potential for hallucinations (Goodfellow et al., 2020; Kingma & Welling, 
2019). We illustrate the identified technological challenges and the respective counter-
measures of IPCs in Table 2 below. 

Table 2. Technological challenges and countermeasures of GenAI adoption in IPCs 

IPC Challenges Respective Countermeasures 

T-C1: Model Hallucination. AI mod-
els may generate made up, inaccurate or 
misleading information, resulting in 
safety exposures, fatal product errors, 
reputational risk, and loss of trust. (C1, 
C6, C8) 
T-C2: Non-Deterministic Nature & 
Reproducibility of Results. Prompt en-
gineering builds on past attempts and 
failures. Sharing only current prompts 
in coding and engineering processes is 
ineffective. (C1, C2, C8, C9) 
T-C3: Multi-Model Interoperability. 
Prompt effectiveness varies across dif-
ferent models, slowing down model up-
grade timeframes and introducing in-
consistent response quality. (C2, C9) 

T-M1: Enterprise Grounding. Hallu-
cinations often stem from insufficient 
data and prompts. RAG and detail-
driven prompt engineering improve ac-
curacy and reliability. (C1, C6, C8) 
 
T-M2: Standardized Testing Envi-
ronments and Procedures. Deploy 
prompt logging technology to capture 
prompt variations and support iterative 
testing and development in team set-
tings. (C1, C2, C8) 
T-M3: Automated Regression Test-
ing. Use predefined evaluation tests 
(e.g., question-answer pairs, BLEU, 
ROUGE) to secure prompt performance 
across GenAI models. (C9, C10) 



Model hallucinations (T-C1) often arise from a LLM-model's reliance on statistical 
patterns rather than factual validation, compounded by biases and gaps in its training 
data. In ambiguous contexts, the model fills in missing details with plausible yet incor-
rect information. This can manifest in different ways, such as fabricated text in LLMs, 
unrealistic visuals in image models, or distorted outputs in audio generation. Conse-
quently, ensuring reliability and consistency in enterprise applications remains crucial, 
particularly in industries facing significant safety requirements or other regulations.  

Tackling model hallucinations through specific countermeasures has shifted the fo-
cus from resource-intensive model fine-tuning (i.e., adapting a pretrained model using 
additional task-specific data) towards more cost-effective solutions, with companies 
recognizing Retrieval-Augmented Generation (RAG) (T-M1) as “the tool of the hour” 
for handling diverse use cases without deep customization (I20). While RAG enhances 
factual grounding by retrieving external data, it does not inherently address reasoning 
errors or deep contextual understanding, requiring additional layers of validation. One 
interviewee emphasized, “RAG is a tool but won’t do it alone” (I06). Such an additional 
layer is prompt engineering, detailing the technique of designing the model input detail-
driven and as a holistic task description. This combination of RAG and detail-driven 
prompt engineering has emerged as a practical and flexible approach to address and 
reduce model hallucinations, although it is not yet considered a miracle cure. 

Furthermore, the non-deterministic blackbox nature of GenAI poses challenges for 
technical developers in terms of reproducibility and the transfer of existing work to 
other developers, as responses can vary even for the same prompt input (T-C2). Unlike 
traditional coding, where building upon the latest code base is standard practice, effec-
tive prompt engineering requires access to the full history of previous iterations, includ-
ing failed or suboptimal prompts. Consequently, an immediate countermeasure in-
cludes the implementation of prompt logging (T-M2) to document variations in 
prompts and their performance. 

Furthermore, rapid model updates by technology providers add complexity (T-C3), 
as companies need to balance the challenges of cost, quality, and latency. Not long ago, 
most enterprises were experimenting with only one (usually OpenAI’s) or two models. 
Our recent discussions with enterprise leaders reveal a notable shift. Today, organiza-
tions are testing and, in some cases, deploying multiple models concurrently. This di-
versified approach enables them to tailor solutions based on performance, size, and 
costs, avoid vendor lock-in, and rapidly leverage emerging technological advance-
ments. One interviewee noted, “Fast upgrades are crucial but difficult” in an industry 
where “we think in years, GenAI in quarters” (I10). To address these challenges, lead-
ing companies adopt rigorous automated regression testing (T-M3) to support the con-
tinuous modification and updating of models. For example, one organization “auto-
matically test[s] each LLM model with 200 predefined question-answer pairs” to en-
sure consistent quality (I20). These predefined answers, created by internal experts, 
serve as reference points to assess factual accuracy, answer consistency across runs, 
and robustness against edge cases. By comparing the model’s responses to these human 
benchmarks, teams can quickly gauge consistency and factual accuracy. When signifi-
cant discrepancies arise, deeper human review follows. 



4.2 Organizational Challenges and Countermeasures of GenAI Adoption 

Within organizations, GenAI introduces both operational and cultural challenges. Ta-
ble 3 below summarizes the key challenges and respective countermeasures.  

Table 3. Organizational challenges and countermeasures of GenAI adoption in IPCs 

IPC Challenges Respective Countermeasures 

O-C1: ROI Assessment. Difficulty in 
quantifying monetary gains on rather 
vague assumptions and linking AI-
driven efficiencies to tangible financial 
outcomes. (C1, C4, C6, C10) 
O-C2: ‘Hopium’ & Usage Drop. High 
initial expectations lead to user frustra-
tion and a decline in usage if GenAI 
then cannot fulfil the raised expecta-
tions, leading to mistrust. (C1, C6) 
O-C3: Make vs. Buy Decision-Mak-
ing. Unseen GenAI advancement speed 
makes in-house solutions quickly out-
dated, creating dilemmas about building 
or purchasing solutions. (C2, C4, C8) 

O-M1: Minimum Viable KPI Set. In-
stead of estimating monetary gains, use 
two KPIs for each use case: Adoption 
(Is it used?) and Performance (e.g., 
hours saved). (C4, C10) 
O-M2: Demystify Expectations. De-
velop and deliver employee training to 
build a realistic understanding of 
GenAI’s capabilities and limitations to 
foster a ‘can-do’ culture. (C1, C6) 
O-M3: Force Roadmap Disclosure. 
Leverage buying power to compel tech 
providers to disclose their development 
roadmap to collaboratively mitigate de-
velopment overlap. (C7, C9, C10) 

 
Within industrial product companies, the adoption of GenAI presents both opera-

tional and cultural challenges that extend far beyond technical implementation. A pri-
mary hurdle is the assessment of return on investment (ROI) (O-C1). IPCs traditionally 
rely on ROI metrics to justify significant investments, yet GenAI’s efficiency gains are 
difficult to capture in purely financial terms. One interviewee remarked, “We will not 
see GenAI on the P&L, yet we will not invest in GenAI without conducting the necessary 
calculations backing investments of that size. Thus, we are in some kind of dilemma, 
whereas we don’t want to get outpaced by our competitors, yet we don’t have the re-
sources to do all” (I12). Another noted, “Calculations are always estimates, that’s for 
sure, but we really don’t know whether we are in scope or completely out of scope” 
(I05). To counter these uncertainties, many organizations are shifting focus from spec-
ulative monetary projections to concrete, measurable KPIs. Specifically, a minimal vi-
able KPI set (O-M1) that evaluates both adoption (i.e., is the solution being used?) and 
performance (e.g., hours saved). The core idea is not to quantify perfect financial ROI 
but to enable consistent comparisons across use cases based on a shared operational 
baseline. This approach reframes success in operational terms, sidestepping the chal-
lenges inherent in financial quantification. 

A related challenge is the phenomenon of “hopium” (O-C2), where high initial ex-
pectations lead to significant disillusionment. Early enthusiasm for GenAI often results 
in inflated promises that, when unmet, rapidly erode user trust. One organization re-
ported that “80% of the licenses we acquired are no longer used, because my people 



do not want to use it anymore. They really weren’t happy with what it can do. It will be 
interesting, if these licenses will become active again, once the technology advances. 
Till then, we’ll have to pay those licenses as well…” (I05). In response, organizations 
are emphasizing the importance of demystifying expectations (O-M2) by investing in 
robust employee training programs. These programs are designed to build a realistic 
understanding of GenAI’s capabilities and limitations, fostering a ‘can-do’ culture that 
encourages curiosity and gradual adoption rather than blind optimism. 

Another critical decision-making challenge is the make versus buy dilemma (O-C3). 
The unprecedented pace of GenAI advancements renders in-house solutions vulnerable 
to rapid obsolescence, complicating decisions between custom development and pur-
chasing pre-built vendor solutions. Many companies have observed that custom-built 
systems can quickly become outdated, forcing them to reconsider the risks associated 
with in-house development. To mitigate this risk, organizations are increasingly engag-
ing in strategic partnerships with technology providers. By leveraging their buying 
power, companies are now able to force roadmap disclosure (O-M3), ensuring that ven-
dors provide insight into future developments. This collaborative transparency not only 
helps avoid vendor lock-in but also enables companies to anticipate technological 
shifts, aligning their investments with a shared, forward-looking vision. 

4.3 Environmental Challenges and Countermeasures of GenAI Adoption 

Beyond internal and technological hurdles, IPCs must also navigate a complex external 
environment characterized by rapidly evolving regulatory demands and market dynam-
ics. Table 4 illustrates core environmental challenges alongside corresponding counter-
measures. 

Table 4. Environmental challenges and countermeasures of GenAI adoption in IPCs 

IPC Challenges Respective Countermeasures 

E-C1: Internal & External Compli-
ance. Model outputs must adhere to IP, 
privacy, and copyright standards, which 
vary by jurisdiction and technology pro-
vider. (C1, C7, C8) 
E-C2: Tech & Partner Lock-In.  
Single-provider dependence for GenAI 
can restrict flexibility and bind infra-
structure to one vendor’s capabilities, 
impacting adaptability. (C6, C8) 
E-C3: Novel AI Regulations. New leg-
islation on AI (e.g., EU AI Act) adds 
complexity, necessitating compliance 
with diverse international regulatory re-
quirements. (C1, C2, C10) 

E-M1: Content Validation Layer. De-
fine model output IP ownership in con-
tracts and implement a content valida-
tion layer with clear supervisory rights 
and responsibilities. (C7, C9) 
E-M2: Model-Agnostic Architecture. 
Separation of GenAIOps and models 
enables rapid switching between models 
and reduces dependencies on single pro-
viders. (C2, C7, C8) 
E-M3: Compliance Assessment 
Framework. Establish a standardized 
process that evaluates AI use cases for 
their compliance with regulations across 
all operational regions. (C10) 



Externally, organizations face multifaceted compliance challenges. GenAI outputs 
must adhere to varying intellectual property, data privacy, and copyright standards that 
differ by jurisdiction and technology provider. A key concern for many firms is ensur-
ing that prompts, information provided with the prompts (such as attached documents), 
and content generated under enterprise licenses remains the intellectual property of the 
company, not the model provider. In addition, outputs must comply with internal guide-
lines, particularly when exposed to external stakeholders. To mitigate these challenges, 
some companies implement a “content validation layer” (E-M1) that automatically 
screens model outputs for non-compliant elements such as threats, insults, or confiden-
tial information before they reach end users. In tandem, a compliance assessment 
framework (E-M3) is increasingly adopted to standardize evaluations of AI use cases, 
ensuring that all deployments consistently meet emerging regulatory demands (e.g., EU 
AI Act) across different regions. 

A further environmental challenge arises from the risk of technological and partner 
lock-in. Relying on a single GenAI provider can restrict an organization’s flexibility 
and tie its infrastructure to one vendor’s evolving capabilities. In response, many or-
ganizations are shifting towards a model-agnostic architecture (E-M2). By decoupling 
GenAIOps from the underlying models, companies can rapidly switch between differ-
ent providers, thereby “avoid[ing] reliance on a single GenAI source” (I10) and en-
hancing adaptability to market shifts. This approach not only safeguards operational 
resilience but also ensures that organizations remain agile in the face of both techno-
logical advancements and shifting vendor strategies. 

In addition to regulatory and vendor-related challenges, environmental factors such 
as cost, latency, and throughput remain critical considerations. Not all models offer the 
same capabilities. Some provide higher quality but come at a greater cost. Others offer 
faster responses or can be deployed locally rather than through the cloud. As businesses 
scale their GenAI adoption, it becomes imperative to select models that strike a balance 
between performance quality and operational efficiency. One interviewee encapsulated 
this sentiment: “It’s more than just quality that counts, but also latency, throughput, 
and especially costs” (I20). Ultimately, ICPs increasingly require the ability to choose 
from a range of models and align them with the specific use case demands. 

5 Discussion 

Industrial product companies face complex challenges when adopting GenAI that span 
technological, organizational, and environmental dimensions. Leveraging the TOE 
framework (Tornatzky & Fleischer, 1990), we expand these dimensions with GenAI-
specific insights: non-determinism, hallucination risk, and model interoperability; 
prompt-engineering routines and lean KPI sets; emergent regulation and vendor-lock-
in mitigation. We contrast these additions with classical DOI/TOE studies that describe 
incremental assimilation (Oliveira & Martins, 2011; Rogers, 1995) and early AI re-
search that stressed data quality, model transparency, and workforce displacement 
(Berente et al., 2021; Dwivedi et al., 2024). Our nine challenge-countermeasure pairs 



thereby advance adoption theory in three ways: (1) they surface intangible micro-rou-
tines as a new organizational capability, (2) elevate vendor-agnostic architecture as an 
environment-shaping response that complements prior regulatory focus (Al-kfairy, 
2025), and (3) lay an empirical foundation for a staged maturity view of GenAI adop-
tion. Although some challenges may apply to other sectors, they are particularly pro-
nounced in industrial product companies (Anderson et al., 2022) that must reconcile 
strict safety and IP demands with emerging GenAI regulation, making rigorous risk 
mitigation and partnership governance indispensable (Porter & Heppelmann, 2014; 
Wlcek et al., 2024). 

While our findings offer targeted insights, they reflect the perspective of large, pa-
tent-active firms and thus are limited in transferability to SMEs. Although certain pat-
terns may resonate more broadly, resource availability and governance structures imply 
that SMEs face distinct constraints. We invite future research to explore these differ-
ences and extend our results to a wider range of organizational contexts. 

Altogether, our results highlight the deeply interconnected relationship between in-
dustrial product companies and AI technology providers. As these companies increas-
ingly rely on close collaborative partnerships with tech vendors, they face the dual chal-
lenge of remaining both tone-setting and technology-agnostic. This dynamic calls for 
further investigation into effective collaboration and integration strategies that can help 
resolve the risks associated with vendor lock-in and ensure long-term flexibility. 

Finally, we encourage scholars to develop a GenAI-adoption maturity model that 
maps the identified specific challenges and corresponding solutions to different succes-
sive stages of organizational GenAI adoption. 

6 Conclusion 

This paper offers a detailed analysis of the challenges and early pathways for adopting 
GenAI in industrial product companies. We conducted 22 expert interviews with rep-
resentatives from 10 industrial product companies and their technology providers, 
many of which are recognized as GenAI leaders based on their patent portfolios. From 
these interviews, we derived a set of nine key challenges and their respective counter-
measures. These challenges span technological, organizational, and environmental di-
mensions, covering issues such as model hallucinations, ROI assessment, unrealistic 
expectations, and regulatory as well as vendor dependency concerns. Our findings pro-
vide actionable insights for industrial product companies seeking to integrate GenAI 
into their operations while mitigating inherent risks. Future research should validate 
and extend our research and explore the interplay between the TOE dimensions in shap-
ing the long-term success of GenAI adoption in these complex settings. 
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